Answer:
0.082g
Explanation:
The following data were obtained from the question:
Heat (Q) = 0.092J
Change in temperature (ΔT) = 0.267°C
Specific heat capacity (C) of water = 4.184J/g°C
Mass (M) =..?
Thus, the mass of present can be obtained as follow:
Q = MCΔT
0.092 = M x 4.184 x 0.267
Divide both side by 4.184 x 0.267
M = 0.092 / (4.184 x 0.267)
M = 0.082g
Therefore, mass of water was present is 0.082.
Answer:

Explanation:
Hello.
In this case, given the heat of fusion of THF to be 8.5 kJ/mol and freezing at -108.5 °C, for the required mass of 5.9 g, we can compute the entropy as:

Whereas n accounts for the moles which are computed below:

Thus, the entropy turns out:

Best regards.
Answer: Alpha radiation
Explanation: Alpha decay : When a larger radioactive nuclei decays into smaller nuclei by releasing alpha radiation, the mass number and atomic number is reduced by 4 and 2 units respectively.

Beta decay : When a larger radioactive nuclei decays into smaller nuclei by releasing beta radiation, the atomic number is increased by 1 unit.

Gamma decay : When a larger radioactive nuclei decays into smaller nuclei by releasing gamma radiation, the mass number remains same.

Number one would be Decades