Answer:
The pressure inside the container would increase with each additional pump.
Explanation:
- From the general gas law of ideal gases:
<em>PV = nRT,</em>
where, P is the pressure of the gas.
V is the volume of the gas.
n is the no. of moles of the gas.
R is the general gas constant.
T is the temperature of the gas.
- As clear from the gas law; the pressure of the gas is directly proportional to the no. of moles of the gas.
<em>P α n.</em>
- As gas particles are pumped into a rigid steel container, the no. of moles of the gas will increase.
So, the pressure of the gas will increase.
<em>Thus, the right choice is: The pressure inside the container would increase with each additional pump.</em>
At the same temperature, steam burns are often more severe that water burns because of water's high HEAT OF VAPORIZATION.
Water possesses high heat of vaporization. The heat of vaporization refers to the amount of heat that is needed to convert a unit mass of water to gas. After getting to the boiling point, a lot of heat is still needed to be absorbed by a boiling water before it can be converted to the gaseous form. Thus, the heat that is inherent in the steam is greater than that which is found in the boiling water, that is why the steam causes more damages.
It has a fixed mass
it does not change with the shape of the container
it cannot be compressed
it has fixed atom and molecules and limited to very small displacement
only vibrational motion occur in the molecules of solid .
Answer:
8.9 mg/l
Explanation: Temp doesnt matter so throw that out automatically then your equation is;
S1/P1=S2/P2
We are looking for S2 and that equation is;
S2=S1*P2/P1 and that is S2=22.25*1/2.5
A little bit of simple math and you get your answer: 8.9 mg/l