We are given with 500 mg of sucrose dissoved in a 200 ml of water. The concentration of the solid is amount of solute per volume of the solvent. The concnetration can be expressed as 2.5 grams sugar per liter water or 250 mg per 100 ml water.
Answer:
1.99grams
Explanation:
- First, we need to calculate the molar mass of the compound: Ca(HCO3)2
Ca = 40g/mol, H = 1g/mol, C = 12g/mol, O = 16g/mol
Hence, Ca(HCO3)2
= 40 + {1 + 12 + 16(3)}2
= 40 + {13 + 48}2
= 40 + {61}2
= 40 + 122
= 162g/mol
Molar mass of Ca(HCO3)2 = 162g/mol
- Next, we calculate the mass of oxygen in one mole of the compound, Ca(HCO3)2.
Oxygen = {16(3)}2
= 48 × 2
= 96g of Oxygen
- Next, we calculate the percentage composition of oxygen by mass by dividing the mass of oxygen in the compound by the molar mass of the compound i.e.
% composition of O = 96/162 × 100
= 0.5926 × 100
= 59.26%.
- The number of moles of the compound, Ca(HCO3)2, must be converted to mass by using the formula; mole = mass/molar mass
0.0207 = mass/162
Mass = 162 × 0.0207
Mass = 3.353grams
However, in every gram of Ca(HCO3)2, there is 0.5926 g of oxygen
Hence, in 3.353grams of Ca(HCO3)2, there will be;
0.5926 × 3.353
= 1.986
= 1.99grams.
Therefore, there is 1.99grams of Oxygen in 0.0207 moles (3.353g) of Ca(HCO3)2.
Answer:
HCl -> H+ + Cl- (monoprotic acid)
The answer is phototropism, which is the growth of an organism responding to the presence of light.
Answer is: <span>reaction is nonspontaneous under standard
conditions at all temperatures.</span>
<span>Gibbs free energy
(G) determines if reaction will proceed spontaneously.
ΔG = ΔH - T·ΔS.
ΔG - changes in Gibbs free energy.
ΔH - changes in enthalpy.
ΔS - changes in entropy.
T is temperature in Kelvins.
When ΔS < 0 (negative entropy change) and ΔH > 0
(endothermic reaction), the process is never spontaneous (ΔG> 0).</span>