Answer:
the work required to turn the crank at the given revolutions is 8,483.4 J
Explanation:
Given;
torque required to turn the crank, T = 4.50 N.m
number of revolutions, = 300 turns
The work required to turn the crank is given as;
W = 2πT
W = 2 x 3.142 x 4.5
W = 28.278 J
1 revolution = 28.278 J
300 revlotions = ?
= 300 x 28.278 J
= 8,483.4 J
Therefore, the work required to turn the crank at the given revolutions is 8,483.4 J
ThIs is the same type of problem
find out the time value
3 = 1/2*a*T^2
6/10 = t^2
t = 0.77 seconds
and the distance is given 5 m
thus speed ,= distance/time
speed = 5/0.77
= 6.45 m/s
Answer:
a) 3-in. pipe
Explanation:
Given that
Fluid flow is in same amount in the same time it means that volume flow rate is same for the pipes
Volume flow rate
Q = A V
A=Area ,V=Velocity

If diameter d is more then the velocity will be less for same volume flow rate .We also Know that if pressure is more then the velocity will be less.
The second pipe 3 in diameter having more diameter then the velocity will be less but the pressure will be more.
That is why the 3 in diameter is having more pressure than 2 in diameter pipe.
Therefore the answer will be a.
a) 3-in diameter pipe
Answer:
Solution
λ=v/n
Here, v=344 m s−1
n=22 MHz =22×106 Hz
λ=344/22×106=15.64×10−6m=15.64μm.
Answer:
What happens to the wavelength of a wave if you double the frequency?
If the frequency of a wave is increased, what happens to its wavelength? As the frequency increases, the wavelength decreases. 2. If the frequency is doubled, the wavelength is only half as long.
Explanation: