Answer:
The mass of moon is 1/100 times and its radius 1/4 times that of earth. As a result, the gravitational attraction on the moon is about one sixth when compared to earth. Hence, the weight of an object on the moon is 1/6th its weight on the earth.
Answer:
They two waves has the same amplitude and frequency but different wavelengths.
Explanation: comparing the wave equation above with the general wave equation
y(x,t) = Asin(2Πft + 2Πx/¶)
Let ¶ be the wavelength
A is the amplitude
f is the frequency
t is the time
They two waves has the same amplitude and frequency but different wavelengths.
Answer:
a) 2.063*10^-4
b) 1.75*10^-4
Explanation:
Given that: d= 1.628 mm = 1.628 x 10-3 I= 12 mA = 12.0 x 10-8 A The Cross-sectional area of the wire is:

a) <em>The Potential difference across a 2.00 in length of a 14-gauge copper </em>
<em> wire: </em>
L= 2.00 m
From Table Copper Resistivity
= 1.72 x 10-8 S1 • m The Resistance of the Copper wire is:

=0.0165Ω
The Potential difference across the copper wire is:
V=IR
=2.063*10^-4
b) The Potential difference if the wire were made of Silver: From Table: Silver Resistivity p= 1.47 x 10-8 S1 • m
The Resistance of the Silver wire is:

=0.014Ω
The Potential difference across the Silver wire is:
V=IR
=1.75*10^-4
La intensidad de la luz se baja con cada bombillo que agregas