Answer:
a) the length of the wire for the circle = ![(\frac{60\pi }{\pi+4}) in](https://tex.z-dn.net/?f=%28%5Cfrac%7B60%5Cpi%20%7D%7B%5Cpi%2B4%7D%29%20in)
b)the length of the wire for the square = ![(\frac{240}{\pi+4}) in](https://tex.z-dn.net/?f=%28%5Cfrac%7B240%7D%7B%5Cpi%2B4%7D%29%20in)
c) the smallest possible area = 126.02 in² into two decimal places
Step-by-step explanation:
If one piece of wire for the square is y; and another piece of wire for circle is (60-y).
Then; we can say; let the side of the square be b
so 4(b)=y
b=![\frac{y}{4}](https://tex.z-dn.net/?f=%5Cfrac%7By%7D%7B4%7D)
Area of the square which is L² can now be said to be;
![A_S=(\frac{y}{4})^2 = \frac{y^2}{16}](https://tex.z-dn.net/?f=A_S%3D%28%5Cfrac%7By%7D%7B4%7D%29%5E2%20%3D%20%5Cfrac%7By%5E2%7D%7B16%7D)
On the otherhand; let the radius (r) of the circle be;
2πr = 60-y
![r = \frac{60-y}{2\pi }](https://tex.z-dn.net/?f=r%20%3D%20%5Cfrac%7B60-y%7D%7B2%5Cpi%20%7D)
Area of the circle which is πr² can now be;
![A_C= \pi (\frac{60-y}{2\pi } )^2](https://tex.z-dn.net/?f=A_C%3D%20%5Cpi%20%28%5Cfrac%7B60-y%7D%7B2%5Cpi%20%7D%20%29%5E2)
Total Area (A);
A = ![A_S+A_C](https://tex.z-dn.net/?f=A_S%2BA_C)
= ![\frac{y^2}{16} +(\frac{60-y}{4\pi } )^2](https://tex.z-dn.net/?f=%5Cfrac%7By%5E2%7D%7B16%7D%20%2B%28%5Cfrac%7B60-y%7D%7B4%5Cpi%20%7D%20%29%5E2)
For the smallest possible area; ![\frac{dA}{dy}=0](https://tex.z-dn.net/?f=%5Cfrac%7BdA%7D%7Bdy%7D%3D0)
∴ ![\frac{2y}{16}+\frac{2(60-y)(-1)}{4\pi}=0](https://tex.z-dn.net/?f=%5Cfrac%7B2y%7D%7B16%7D%2B%5Cfrac%7B2%2860-y%29%28-1%29%7D%7B4%5Cpi%7D%3D0)
If we divide through with (2) and each entity move to the opposite side; we have:
![\frac{y}{18}=\frac{(60-y)}{2\pi}](https://tex.z-dn.net/?f=%5Cfrac%7By%7D%7B18%7D%3D%5Cfrac%7B%2860-y%29%7D%7B2%5Cpi%7D)
By cross multiplying; we have:
2πy = 480 - 8y
collect like terms
(2π + 8) y = 480
which can be reduced to (π + 4)y = 240 by dividing through with 2
![y= \frac{240}{\pi+4}](https://tex.z-dn.net/?f=y%3D%20%5Cfrac%7B240%7D%7B%5Cpi%2B4%7D)
∴ since
, we can determine for the length of the circle ;
60-y can now be;
= ![60-\frac{240}{\pi+4}](https://tex.z-dn.net/?f=60-%5Cfrac%7B240%7D%7B%5Cpi%2B4%7D)
= ![\frac{(\pi+4)*60-240}{\pi+40}](https://tex.z-dn.net/?f=%5Cfrac%7B%28%5Cpi%2B4%29%2A60-240%7D%7B%5Cpi%2B40%7D)
= ![\frac{60\pi+240-240}{\pi+4}](https://tex.z-dn.net/?f=%5Cfrac%7B60%5Cpi%2B240-240%7D%7B%5Cpi%2B4%7D)
= ![(\frac{60\pi}{\pi+4})in](https://tex.z-dn.net/?f=%28%5Cfrac%7B60%5Cpi%7D%7B%5Cpi%2B4%7D%29in)
also, the length of wire for the square (y) ; ![y= (\frac{240}{\pi+4})in](https://tex.z-dn.net/?f=y%3D%20%28%5Cfrac%7B240%7D%7B%5Cpi%2B4%7D%29in)
The smallest possible area (A) = ![\frac{1}{16} (\frac{240}{\pi+4})^2+(\frac{60\pi}{\pi+y})^2(\frac{1}{4\pi})](https://tex.z-dn.net/?f=%5Cfrac%7B1%7D%7B16%7D%20%28%5Cfrac%7B240%7D%7B%5Cpi%2B4%7D%29%5E2%2B%28%5Cfrac%7B60%5Cpi%7D%7B%5Cpi%2By%7D%29%5E2%28%5Cfrac%7B1%7D%7B4%5Cpi%7D%29)
= 126.0223095 in²
≅ 126.02 in² ( to two decimal places)