Answer
given,
wavelength = λ = 18.7 cm
= 0.187 m
amplitude , A = 2.34 cm
v = 0.38 m/s
A) angular frequency = ?
angular frequency ,
ω = 2π f
ω = 2π x 2.03
ω = 12.75 rad/s
B) the wave number ,
C)
as the wave is propagating in -x direction, the sign is positive between x and t
y ( x ,t) = A sin(k x - ω t)
y ( x ,t) = 2.34 x sin(33.59 x - 12.75 t)
From the information given, The mass of the bowling ball is 8 Kilograms and the momentum with which it is moving is 16 kg m/s.
We use the formula p = m × v
Where p is the momentum, m is the mass and v is the velocity.
We need velocity so we rewrite the equation thus:
P = mv, therefore p/m = v or v = p/m
In our case p = 16 and m = 8
v = p/m
v = 16/8
v = 2
Therefore the bowling ball is travelling at 2m/s
Answer:
I believe the answer for #1 is D and the answer for #2 is B
Explanation:
I hope this is correct and helps
Answer:
B. Geosphere
A. Biosphere
A. Atmosphere
Explanation:
Volcanic eruptions occurs within the Geosphere. The geosphere is the rock solid earth make up of rocks that extends into the deep interior.
Magma formed deep within the crust rises to elevated parts and finally erupts as lava on the surface. When they cool, they solidify to form volcanic rocks.
The volcanic eruptions affects the biosphere significantly. The biosphere is the portion of the earth where all life forms exists.
Gases and ash spewed during an eruption into the atmosphere causes severe changes to weather and leads to pollution. The atmosphere is the gaseous envelope round the earth.
Answer:
4 m/s
Explanation:
Momentum is defined as:

where
m is the mass of the object
v is its velocity
For the object in this problem, we know:
p = 200 kg m/s is the momentum
m = 50 kg is the mass
Solving for the velocity, we find:
