1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
V125BC [204]
4 years ago
12

The two loudspeakers in the drawing are producing identical sound waves. The waves spread out and overlap at the point P. What i

s the difference in the two path lengths if point P is at the third sound intensity minimum from the central sound intensity maximum
Physics
1 answer:
Damm [24]4 years ago
5 0

Answer:

5/2π

Explanation:

According to quizlet the answer is 5/2π

You might be interested in
Which of the following would effect the speed of a wave ? A) the matter it travels through
Artemon [7]

Answer:

Option D

The frequency

Explanation:

The speed of wave is depedant only on the wavelength and frequency of waves since it is given by s=fw where s is the speed, f is frequency and w is the wavelength. Since the options given has only one factor, that is frequency, hence option D is correct. In case we had wavelength could be among the options, both would be correct.

5 0
3 years ago
A dump truck and a little toy matchbox car have the same velocity. which one has the greater momentum?
Zina [86]
That would be the dump truck. Momentum depends on how heavy a certain object is in motion. The more weight it has the harder it is to stop.
4 0
3 years ago
to measure the static friction coefficient between a block and a vertical wall, a spring is attached to the block, is pushed on
Stolb23 [73]

Answer:

μ = mg/kx

Explanation:

Since the bock does not slip, the frictional force equals the weight of the block. So, F = mg. Now, the frictional force, F = μN where μ = coefficient of static friction and N = Normal force.

Now, the normal force equals the spring force F' = kx where k = spring constant and x = compression of spring.

N = F' = kx

So, F = μN = μkx

μkx = mg

So, μ = mg/kx

8 0
3 years ago
The Moon orbits Earth in an average of p = 27.3 days at an average distance of a =384,000 kilometers. Using Newton’s version of
Korvikt [17]

Answer:

The mass of the earth, M=6.023\times 10^{24}\ kg

Explanation:

It is given that,

Time taken by the moon to orbit the earth, T=27.3\ days=2358720\ m

Distance between moon and the earth,r=384000\ km=384\times 10^6\ m

We need to find the mass of the Earth using Kepler's third law of motion as :

T^2=\dfrac{4\pi^2}{GM}r^3

M=\dfrac{4\pi^2r^3}{T^2G}

M=\dfrac{4\pi^2\times (384\times 10^6)^3}{(2358720)^2\times 6.67\times 10^{-11}}

M=6.023\times 10^{24}\ kg

So, the mass of the earth is 6.023\times 10^{24}\ kg. Hence, this is the required solution.

7 0
4 years ago
Two ropes are attached to either side of a 100.0 kg wagon as shown below. The rope on the right is pulled at an angle 40.0° rela
NikAS [45]

The acceleration of the wagon is found by applying Newton's Second Law of motion.

1. The responses for question 1 are;

  • x-component of the tension in the rope on the right is approximately <u>91.93 N</u>
  • y-component of the tension in the rope on the right is approximately <u>71.135 N</u>
  • x-component of the tension in the rope on the left is -80.0 N
  • y-component of the tension in the rope on the left is 0

2. The net force in the x-direction is approximately <u>11.93 N</u>

3. The net acceleration of the wagon in the horizontal direction is approximately <u>0.1193 m/s²</u>.

Reasons:

The given parameters are;

Mass of the wagon, m = 100.0 kg

Angle of inclination to the horizontal of the rope to the right, θ = 40.0°

Tension in the rope on the right = 120.0 N

Direction in which the rope on the left is pulled = To the west

Tension in the rope on the left = 80.0 N

1. The <em>x</em> and <em>y</em> component of the tension in the rope on the right are;

x-component = 120.0 N × cos(40.0°) ≈ <u>91.93 N</u>

y-component = 120.0 N × sin(40.0°) ≈ <u>77.135 N</u>

The <em>x</em> and <em>y</em> component of the tension in the rope on the left are;

x-component = 80.0 N × cos(180°) = <u>-80.0 N</u>

y-component = 80.0 N × sin(180°) = <u>0.0 N</u>

2. The net force in the horizontal direction, Fₓ, is found as follows;

Fₓ = The x-component of the rope on the left + The x-component of the rope on the right

Which gives;

Fₓ = 91.93 N - 80.0 N = <u>11.93 N</u>

3. The net acceleration of the block is given as follows;

According to Newton's Second Law of motion, we have;

Force in the horizontal direction, Fₓ = Mass of wagon, m × Acceleration of the wagon in the horizontal direction, aₓ

Fₓ = m × aₓ

Therefore;

\displaystyle a_x = \frac{F_x}{m}  \approx \frac{11.93 \, N}{100.0 \, kg} = \mathbf{0.1193 \ m/s^2}

  • The acceleration of the wagon in the horizontal direction, aₓ ≈ <u>0.1193 m/s²</u>.

Learn more here:

brainly.com/question/20357188

8 0
3 years ago
Other questions:
  • Which option correctly defines the scientific method?
    15·1 answer
  • Convert 56,789 mm to km.
    13·1 answer
  • How to explain horizontal in words
    15·1 answer
  • A song is playing on a radio. Which of the following best
    15·2 answers
  • Describe, in terms of the motion of particles in an object​
    8·1 answer
  • Who is the founder of pelincilin​
    12·1 answer
  • Can anyone help me with this assignment? please and thank you
    11·1 answer
  • Two spherical objects are separated by a distance that is 1.08 x 10-3 m. The objects are initially electrically neutral and are
    6·1 answer
  • Two 0.60-kilogram objects are connected by a thread that passes over a light, frictionless pulley. The objects are initially hel
    9·1 answer
  • What causes infectious diseases?
    8·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!