The average speed of the whole travel is equal to <u>400 mph</u>.
Why?
From the statement, we know that whole travel is divided into three parts. For the first part (traveling from New York to Chicago), we have that it was 3.25 hours and the covered distance was half of the total distance (1400mi). For the second part, we have that it was 1 hour (layover time), and the covered no distance. For the third part (traveling from Chicago to Los Angeles), we have that it was 2.75 hours, and it took the other half of the total distance (1400mi).
We can calculate the average speed of the whol travel using the following formula:

Now, substituting and calculating, we have:


Hence, we have the average speed of the whole travel is equal to 400 mph.
Have a nice day!
Answer:
16÷8=2
Explanation:
if you run 8 mi an hour than in 16 mi you would have run 2 hours
It's not so much a "contradiction" as an approximation. Newton's law of gravitation is an inverse square law whose range is large. It keeps people on the ground, and it keeps satellites in orbit and that's some thousands of km. The force on someone on the ground - their weight - is probably a lot larger than the centripetal force keeping a satellite in orbit (though I've not actually done a calculation to totally verify this). The distance a falling body - a coin, say - travels is very small, and over such a small distance gravity is assumed/approximated to be constant.
Answer:
2442.5 Nm
Explanation:
Tension, T = 8.57 x 10^2 N
length of rope, l = 8.17 m
y = 0.524 m
h = 2.99 m
According to diagram
Sin θ = (2.99 - 0.524) / 8.17
Sin θ = 0.3018
θ = 17.6°
So, torque about the base of the tree is
Torque = T x Cos θ x 2.99
Torque = 8.57 x 100 x Cos 17.6° x 2.99
Torque = 2442.5 Nm
thus, the torque is 2442.5 Nm.