Answer:
h' = 603.08 m
Explanation:
First, we will calculate the initial velocity of the pellet on the surface of Earth by using third equation of motion:
2gh = Vf² - Vi²
where,
g = acceleration due to gravity on the surface of earth = - 9.8 m/s² (negative sign due to upward motion)
h = height of pellet = 100 m
Vf = final velocity of pellet = 0 m/s (since, pellet will momentarily stop at highest point)
Vi = Initial Velocity of Pellet = ?
Therefore,
(2)(-9.8 m/s²)(100 m) = (0 m/s)² - Vi²
Vi = √(1960 m²/s²)
Vi = 44.27 m/s
Now, we use this equation at the surface of moon with same initial velocity:
2g'h' = Vf² - Vi²
where,
g' = acceleration due to gravity on the surface of moon = 1.625 m/s²
h' = maximum height gained by pellet on moon = ?
Therefore,
2(1.625 m/s²)h' = (44.27 m/s)² - (0 m/s)²
h' = (1960 m²/s²)/(3.25 m/s²)
<u>h' = 603.08 m</u>
Answer:
<em>Hydrogen bond is the attractive force between the hydrogen attached electronegative atom </em>
Explanation:
To calculate the velocity of the sound wave, we use this formula:
V = 331 + [0.6*T],
Where V is the velocity and T represents temperature.
When the temperature is 36 degree Celsius, we have
V = 331 + [0.6 * 36]
V = 331 + 21.6 = 352.6
Therefore, V = 352.6 m/s.
The kinetic energy of a book on a shelf is equal to the work done to lift the book to the shelf is false. The kinetic energy on the shelf is zero because it is not in action.