The quest to put Americans on the moon before the Soviets do. During the Space Race, a couple of astronauts went up into space only to be tragically killed in an explosion.
Answer:
1190 N
Explanation:
Force: This can be defined as the product of mass and velocity. The unit of force is Newton(N).
From the question,
F = ma................. Equation 1
Where F = average force, m = mass, a = acceleration.
But,
a = (v-u)/t................ Equation 2
Where v = final velocity, u = initial velocity, t = time.
Substitute equation 2 into equation 1
F = m(v-u)/t.............. Equation 3
Given: m = 70 kg, v = 1.7 m/s, u = 0 m/s (from rest), t = 0.1 s.
Substitute into equation 3
F = 70(1.7-0)/0.1
F = 1190 N.
Answer:
The velocity of the fish hitting the ground is , v = 45.795 m/s
Explanation:
Given data,
The mass of the fish, m = 5 kg
The height of the bird from the surface, h = 107 m
Using the III equation of motion,
v² = u² + 2gs
<em> v = √(u² + 2gs)</em>
Substituting the values,
v = √(0² + 2 x 9.8 x 107)
= 45.795 m/s
Hence, the velocity of the fish hitting the ground is, v = 45.795 m/s
Answers:
a) 
b) 
c) 
Explanation:
<h3>a) Mass of the continent</h3>
Density
is defined as a relation between mass
and volume
:
(1)
Where:
is the average density of the continent
is the mass of the continent
is the volume of the continent, which can be estimated is we assume it as a a slab of rock 5300 km on a side and 37 km deep:

Finding the mass:
(2)
(3)
(4) This is the mass of the continent
<h3>b) Kinetic energy of the continent</h3>
Kinetic energy
is given by the following equation:
(5)
Where:
is the mass of the continent
is the velocity of the continent
(6)
(7) This is the kinetic energy of the continent
<h3>c) Speed of the jogger</h3>
If we have a jogger with mass
and the same kinetic energy as that of the continent
, we can find its velocity by isolating
from (5):
(6)
Finally:
This is the speed of the jogger
Answer:
Zero
Explanation:
W = F × s
F = 10 N,
t = 3min = 180sec
s = 0( no change in postion)
W = 10 ×0
W = 0