The answer is b i just took the quiz and got it right|| k12.gca student
Half-life of a radioactive substance is the time required to reduce the amount of substance to half of its initial amount.
In present case, half-life is material is given as 1000 years and initial amount of material is given as 400 kg
Answer 1) Since, half-life of radio-active substance is 1000 years, therefore after 1st half life, amount of the material will be left to half the initial amount. Hence, amount of substance left after 1000 years = 400/2 = 200 kg.
Answer 2) For 2000 years, radioactive material has crossed 2 times the half life. Therefore , amount of the material will be left to 1/4 the initial amount. Hence, amount of substance left after 2000 years = 400/4 = 100 kg.
Answer 3) For 4000 years, radioactive material has crossed 4 times the half life. Therefore , amount of the material will be left to 1/16 the initial amount. Hence, amount of substance left after 4000 years = 400/16 = 25 kg.
Answer:
An exothermic reaction releases energy. Endothermic takes in energy.
Explanation:
Answer:
6 x 10⁶ g Fe
Explanation:
Step 1: Set up dimensional analysis
7 x 10²⁸ atoms Fe (1 mol Fe/6.02 x 10²³ atoms Fe)(55.85 g Fe/1 mol Fe)
Step 2: Multiply, divide, and cancel out units
atoms Fe and atoms Fe cancel out.
mol Fe and mol Fe cancel out.
We should be left with g Fe.
7 x 10²⁸/6.02 x 10²³ = 116279 mol Fe
116279(55.85) = 6.49 x 10⁶ g Fe
Step 3: Sig figs
There is only 1 sig fig in this problem.
6.49 x 10⁶ g Fe ≈ 6 x 10⁶ g Fe
Pure silicon is a poor conductor at room temperature because it has 4 valence electrons