Answer:
the catalyst is for activation energy
Answer:
1.5×10⁷ Hz
Explanation:
From the question given above, the following data were obtained:
Wavelength of radio wave (λ) = 20 m
Frequency (f) =?
Frequency and wavelength of a wave are related by the following equation:
v = λf
Where:
'v' is the velocity of electromagnetic wave.
'λ' is the wavelength
'f' is the frequency.
With the above formula, we can obtain the frequency of the radio wave as illustrated below:
Wavelength of radio wave (λ) = 20 m
Velocity (v) = 3×10⁸ m/s
Frequency (f) =?
v = λf
3×10⁸ = 20 × f
Divide both side by 20
f = 3×10⁸ / 20
f = 1.5×10⁷ Hz
Thus the frequency of the radio wave is 1.5×10⁷ Hz
1. 2Pb(NO₃)₂ → 2PbO + 4NO₂ + O₂
2. CH₄ + 2O₂ → CO₂ + 2H₂O
3. Cu + 2AgNO₃ → Cu(NO₃)₂ + 2Ag
4. MnO₂ + 4HCl → MnCl₂ + 2H₂O + Cl₂
5. Pb(NO₃)₂ + 2NaCl → PbCl₂ + 2NaNO₃
1)

2)
CuSO_4+Cu_2Cl_2\neq>

<span>We know the relation between heat and temperature follows the formula:
Q = Ce * m * (Tf-Ti) , where Q is heat transfer, Ce is specific heat, m is mass, Tf is final temperature and Ti is initial temperature.
Note that heat value is given in kj so we need to change to joules, then as heat is absorbed the final temperature will increase.
4,689 = 0.385 * 34.2 * (Tf-24)
Tf = 4,689 / (0.385 * 34.2) + 24 =380.12ÂşC</span>