Answer:
The answer to the question is option <u>D</u>
1 CH4 (g) + 2 O2 (g) -----> CO2 (g) + 2H2O(l) ΔH= - 890 kJ
1 mol 2 mol
1) If ΔH has minus, it means "release". We need only "release" choices.<span>
2) From reaction
1 mol </span>CH4 (g) "releases" ΔH= - 890 kJ - We do not have this choice.
2 mol O2 (g) "release" ΔH= - 890 kJ, so
1 mol O2 (g) "release" ΔH= - 445 kJ
Correct answer is B.
Answer:
Non-metals tend to gain electrons
Explanation:
Answer:
To determine the enthalpy and entropy of dissolving a compound, you need to measure the Ksp at multiple temperatures. Then, plot ln(Ksp) vs. 1/T. The slope of the plotted line relates to the enthalpy (ΔH) of dissolving and the intercept of the plotted line relates to the entropy (ΔS) of dissolving.
Explanation:
Hello there!
In this case, according to the given information, it turns out possible for us use the thermodynamic definition of the Gibbs free energy and its relationship with Ksp as follows:

Thus, by combining them, we obtain:

Which is related to the general line equation:

Whereas:

It means that we answer to the blanks as follows:
To determine the enthalpy and entropy of dissolving a compound, you need to measure the Ksp at multiple temperatures. Then, plot ln(Ksp) vs. 1/T. The slope of the plotted line relates to the enthalpy (ΔH) of dissolving and the intercept of the plotted line relates to the entropy (ΔS) of dissolving.
Regards!
The chemical reaction is expressed as:
3Ba(NO3)2 + 2Na3PO4 = Ba3(PO4)2 + 6NaNO3
To determine the percent yield, we need to determine the theoretical yield of the reaction from the given amounts of the reactants. We do as follows:
0.3 mol 3Ba(NO3)2 ( 2 mol Na3PO4 / 3 mol Ba(NO3)2) = 0.2 mol Na3PO4
Therefore, the limiting reactant would be Ba(NO3)2 since it is consumed completely in the reaction.
Theoretical yield = 0.3 mol 3Ba(NO3)2 ( 1 mol Ba3(PO4)2 / 3 mol Ba(NO3)2) = 0.1 mol Ba3(PO4)2
Percent yield = actual yield / theoretical yield = 0.095 mol Ba3(PO4)2 / 0.1 mol Ba3(PO4)2 x 100 = 95%