Answer:

Step-by-step explanation:
Hi there!
<u>What we need to know:</u>
- Linear equations are typically organized in slope-intercept form:
where m is the slope of the line and b is the y-intercept (the value of y when the line crosses the y-axis)
- Parallel lines will always have the same slope but different y-intercepts.
<u>1) Determine the slope of the parallel line</u>
Organize 3x = 2y into slope-intercept form. Why? So we can easily identify the slope, m.

Switch the sides

Divide both sides by 2 to isolate y

Now that this equation is in slope-intercept form, we can easily identify that
is in the place of m. Therefore, because parallel lines have the same slope, the parallel line we're solving for now will also have the slope
. Plug this into
:

<u>2) Determine the y-intercept</u>

Plug in the given point, (4,0)

Subtract both sides by 6

Therefore, -6 is the y-intercept of the line. Plug this into
as b:

I hope this helps!
Answer: 52.34
Step-by-step explanation: sin23=opposite/hypotenuse=x/125
sin23/1=x/125
125sin23=x
x=48.841391... add 3.5 = 52.341391... round to 52.34
Answer:
a.is approximately normal because of the central limit theorem.
Step-by-step explanation:
Central Limit Theorem
The Central Limit Theorem establishes that, for a normally distributed random variable X, with mean
and standard deviation
, the sampling distribution of the sample means with size n can be approximated to a normal distribution with mean
and standard deviation
.
For a skewed variable, the Central Limit Theorem can also be applied, as long as n is at least 30.
In this question:
Sample limit of 32 > 30, so the distribution is approximately normal because of the central limit theorem, and the correct answer is given by option a.