Answer:
El astrónomo alemán Johannes Kepler
Explanation:
Primera Ley:
Los planetas giran alrededor del Sol siguiendo una trayectoria elíptica. El Sol se sitúa en uno de los focos de la elipse.
La excentricidad e de una elipse es una medida de lo alejado que se encuentran los focos del centro.
Pues bien, la mayoría de las órbitas planetarias tienen un valor muy pequeño de excentricidad, es decir e ≈ 0. Esto significa que, a nivel práctico, pueden considerarse círculos descentrados.
Segunda Ley:
La recta que une el planeta con el Sol barre áreas iguales en tiempos iguales.Para que esto se cumpla, la velocidad del planeta debe aumentar a medida que se acerque al Sol. Esto sugiere la presencia de una fuerza que permite al Sol atraer los planetas, tal y como descubrió Newton años más tarde.
Tercera ley de Kepler:
La tercera ley, también conocida como armónica o de los periodos, relaciona los periodos de los planetas, es decir, lo que tardan en completar una vuelta alrededor del Sol, con sus radios medios.
Para un planeta dado, el cuadrado de su periodo orbital es proporcional al cubo de su distancia media al Sol.
Answer: Qualifying as an Olympian is an extremely difficult feat for anyone to accomplish and is regarded as a very prestigious title. To qualify as a Paralympian is an even tougher challenge. ForParalympic athletes, the sports in which Olympians compete are harder to do, harder to train for, and pose challenges that would prove nearly impossible for a fully able-bodied person to overcome. The disparity in level of difficulty between the same sports in Olympics and Paralympics was evident to me when watching the events. Whether skiing down a mountain, swimming, or playing on ice, Paralympic athletes must demonstrate a higher level of skill in order to succeed in their respective event.
It is fine to use the equation given by Plitter, since we are told that the mass is about the same as it is now, and I seriously doubt the original question wants the student to go into relativistic effects, electron degeneracy pressure and magnetic effects that govern a real white dwarf star.
There is no need to make it unnecessarily complicated, when the question is set at high school level. The question asks, given a particular radius, and a given mass, what will the density be (which in this case will be the average density). To answer the question, one needs to know the mass of the sun (which is about 2×1030 Kg. One needs to convert the diameter to a radius, and then calculate the spherical volume of the white dwarf. Then one can use the formula given above, namely density=mass/volume