Answer:
The answer to your question is: b
Explanation:
a. Magnesium shares an electron somewhat unevenly from its 3s orbital with the 3p orbital of chlorine producing a mildly polar covalent bond. This option is wrong because Mg does not share electrons it loses electrons.
b. Magnesium loses and electron from the 3s and gives it up to the 3p of chlorine producing an ionic bond. This option is correct, Mg loses one electron and Cl receives it, the bond formed between Mg and Cl is ionic.
c. Magnesium does not react chemically with chlorine because magnesium gives up electrons, but chlorine only shares electrons. This answer is wrong, Mg and Cl react and produce MgCl₂.
d. Magnesium shares an electron from the 3s orbital with the 3p orbital of chlorine producing a covalent bond. Mg does not share electrons and is not able to produce covalent bonds.
2.083 Liters of 6.0 M solution sulfuric acid is required. This solved using molecular calculations and Titration.
Solution: 
Moles of hydrogen gas = 
Then 12.5 moles of hydrogen will be obtained from Moles of Sulfuric acid = 12.5 mol
Molarity of the sulfuric acid solution = 6.0 M = 6 mol/ l
6M = 
where V is the volume needed

V = 2.083 l
<h3>
What is Titration?</h3>
- Titration, commonly referred to as titrimetry, is a typical quantitative chemical analysis method used in laboratories to ascertain the unidentified quantity of an analyte .
- Titration is frequently referred to as volumetric analysis because it relies heavily on volume measurements. The titrant or titrator is a reagent that is prepared as a standard solution.
- To determine concentration, a solution of the analyte or titrand reacts with a known concentration and volume of the titrant. The titration volume is the amount of titrant that has responded.
- Titrations come in a variety of forms with various protocols and objectives. Redox and acid-base titrations are the two most typical types of qualitative titrations.
To learn more about titration with the given link
brainly.com/question/2728613
#SPJ4
What are you asking? Id love to help but cant without proper information
I believe your answer would be helium friend :)
How does the law of conservation of mass apply to this reaction: C2H4 + O2 → H2O + CO2?