6.6 ×
J = 6.2 ×
British thermal units
First of all, we should know that 1 British thermal unit = 1055 Joules.
From question, heat = 6.6 ×
J
1 BTU = 1055 J
6.6 ×
J =
× 6.6 ×
British thermal units
= 6.2 ×
British thermal units
1000 Joules = 1 kilojoule
A kilojoule is a unit of measure of energy, in the equal way that kilometers degree distance. meals energy used to be measured in energy and some international locations still use those gadgets.
The power we get from foods and drinks is measured in kilojoules. that is the metric time period for calorie. Kilojoules and energy constitute the equal aspect. One calorie is ready four kilojoules.
Calorie a unit for measuring warmth same to the quantity of warmth required to elevate the temperature of one gram of water one diploma Celsius.
Learn more about kilojoules here :- brainly.com/question/490326
#SPJ4
We will use the expression for freezing point depression ∆Tf
∆Tf = i Kf m
Since we know that the freezing point of water is 0 degree Celsius, temperature change ∆Tf is
∆Tf = 0C - (-3°C) = 3°C
and the van't Hoff Factor i is approximately equal to 2 since one molecule of KCl in aqueous solution will produce one K+ ion and one Cl- ion:
KCl → K+ + Cl-
Therefore, the molality m of the solution can be calculated as
3 = 2 * 1.86 * m
m = 3 / (2 * 1.86)
m = 0.80 molal
Answer is 3Mg + N2 —--> Mg3 N2
G(2)=2
For this, you can plug in 2 everywhere you see an n. So the equation will read:
g(2)=g(2-1)+2 -> g(2)=g(1)+2. Since we are given g(1)=0, we can plug in 0 where we see g(1). The equation is now. g(2)=0+2. So, g(2)=2.
Answer: 116 g of copper
Explanation:

where Q= quantity of electricity in coloumbs
I = current in amperes = 24.5A
t= time in seconds = 4.00 hr =
(1hr=3600s)

of electricity deposits 63.5 g of copper.
352800 C of electricity deposits =
of copper.
Thus 116 g of Cu(s) is electroplated by running 24.5A of current
Thus remaining in solution = (0.1-0.003)=0.097moles