Answer:
Explanation:
The variables we know and are given are:
time, t = 20s
Charge, Q = 3x1-^-6 electrons, which is just 3x10^-6C (C stands for Coulombs, which is the unit for Charge)
We need to find the current, I, and since we know Q and t we can substitute these values into the given equation:
I=Q/t (which if you look at what the RHS is saying, its Charge over time, or more literally means the amount of charge passing a point over a period of time)
If we substitute these values, we will get I as:
I = Q / t
I = 3x10^-6 / 20
I = 1.5x10^-7 A
Hope this helps!
Let's use Newton's 2nd law of motion:
Force = (mass) x (acceleration)
Force = (68 kg) x (1.2 m/s²) = 81.6 newtons .
Explanation:
Work = force × displacement
532 J = 48 N × d
d ≈ 11 m
Answer:
5.9 x 10⁻⁷m
Explanation:
Given parameters:
Frequency = 5.085 x 10¹⁴Hz
Speed of light = 3.0 x 10⁸m/s
Unknown:
Wavelength of the orange light = ?
Solution:
The wavelength can be derived using the expression below;
wavelength =
v is the speed of light
f is the frequency
wavelength =
= 5.9 x 10⁻⁷m
Answer:
The correct answer option is C
Explanation:
In a balanced chemical reaction mass of the reactant are always equal to mass of the products. Also known as Law of Conservation of Mass which states that " mass can nor be created nor be destroyed in a chemical reaction."
So, the mass of the reactant will be equal to the mass of products.That is 120 grams.
Hence, the correct answer option(C).