The work done on the ship is 
Explanation:
The work done by a force on an object is given by:
where
F is the magnitude of the force
d is the displacement
is the angle between the direction of the force and of the displacement
In this problem, we have:
(force acting on the ship)
d = 3.00 km = 3000 m (displacement of the ship)
(because the force is horizontal, and the displacement is horizontal as well)
Therefore, the work done on the ship is

Learn more about work:
brainly.com/question/6763771
brainly.com/question/6443626
#LearnwithBrainly
Answer:
Well the definition of an application is the act of putting to a special use or purpose so lam assuming that you want specific uses that scientists make of gravity in their work.
Well our first application has helped us to send satellites around the solar system with what Nasa calls gravity assist. Using a particular planets gravity to slingshot a satellite to another destination. Look it up.
The next application much simpler but here on Earth. There are many hydro-electric power stations in use all over the world. Water is stored at a high level and released falling 100s of metres to a turbine where it generates electricity.
Hope that helps.
Explanation:
Answer:
The x-component of
is 56.148 newtons.
Explanation:
From 1st and 2nd Newton's Law we know that a system is at rest when net acceleration is zero. Then, the vectorial sum of the three forces must be equal to zero. That is:
(1)
Where:
,
,
- External forces exerted on the ring, measured in newtons.
- Vector zero, measured in newtons.
If we know that
,
,
and
, then we construct the following system of linear equations:
(2)
(3)
The solution of this system is:
, 
The x-component of
is 56.148 newtons.
I just need points to ask my own question.
Answer:
so simple it is a square formula