Answer:
1) joule
2)
3)
Explanation:
1) Luminosity is the <u>amount of light emitted</u> (measured in Joule) by an object in a unit of<u> time</u> (measured in seconds). Hence in SI units luminosity is expressed as joules per second (), which is equal to Watts ().
This amount of light emitted is also called radiated electromagnetic power, and when this is measured in relation with time, the result is also called radiant power emitted by a light-emitting object.
Therefore, if we want to calculate luminosity the Joule as a unit will be used.
2) Work is expressed as force multiplied by the distane :
Where force has units of and distance units of .
If we input the units we will have:
This is 1Joule () in the SI system, which is also equal to
3) The formula to calculate the percent error is:
Where:
is the experimental value
is the accepted value
This is the percent error
Answer:
14.8m
Explanation:
Given parameters:
Initial speed = 17m/s
Unknown:
Maximum height = ?
Solution:
At the maximum height, the final speed will be 0m/s;
We use of the kinematics equation to solve this problem.
V² = U² - 2gH
V is the final velocity
U is the initial velocity
g is the acceleration due to gravity
H is the height
0² = 17² - (2 x 9.8 x h )
0 = 289 - (9.6h)
-289 = -19.6h
h = 14.8m
Answer:
5773.50269 Hz
23 A
Explanation:
= Inductance = 6 mH
= Capacitance = 5 μF
= Resistance = 3 Ω
= Maximum emf = 69 V
Resonant angular frequency is given by
The resonant angular frequency is 5773.50269 Hz
Current is given by
The current amplitude at the resonant angular frequency is 23 A
Answer:
v = 0.41 m/s
Explanation:
- In this case, the change in the mechanical energy, is equal to the work done by the fricition force on the block.
- At any point, the total mechanical energy is the sum of the kinetic energy plus the elastic potential energy.
- So, we can write the following general equation, taking the initial and final values of the energies:
- Since the block and spring start at rest, the change in the kinetic energy is just the final kinetic energy value, Kf.
- ⇒ Kf = 1/2*m*vf² (2)
- The change in the potential energy, can be written as follows:
where k = force constant = 815 N/m
xf = final displacement of the block = 0.01 m (taking as x=0 the position
for the spring at equilibrium)
x₀ = initial displacement of the block = 0.03 m
- Regarding the work done by the force of friction, it can be written as follows:
where μk = coefficient of kinettic friction, Fn = normal force, and Δx =
horizontal displacement.
- Since the surface is horizontal, and no acceleration is present in the vertical direction, the normal force must be equal and opposite to the force due to gravity, Fg:
- Fn = Fg= m*g (5)
- Replacing (5) in (4), and (3) and (4) in (1), and rearranging, we get:
- Replacing by the values of m, k, g, xf and x₀, in (7) and solving for v, we finally get:
Viscosity of liquids is essentially the 'thickness' of the liquid. For instance, honey and water have different viscosities. Honey has a higher one and therefore, liquids with high viscosity do not flow as well as liquids with low viscosity (water).