Answer:
AB= AC times AE/AD
Step-by-step explanation:
we know that
If two figures are similar, then the ratio of its corresponding sides is proportional
so
In this problem
AB/AC=AE/AD
solve for AB
AB=(AC)(AE)/AD
Answer:
g is decreasing for all x less than or equal to -1
Step-by-step explanation:
The graph of the function y = |x| looks like a "vee."
g(x) = |x + 1| - 7 moves that graph 1 unit to the <u>left</u><em> </em>(I know, it looks backwards!) and down 7 units. See attached image.
Function g(x) is decreasing for all .
The answer is: " 91 " .
___________________________________________________
→ " B = 91 " .
__________________________________________________
Explanation:
__________________________________________________
Given:
__________________________________________________
" A + B = 180 " ;
"A = -2x + 115 " ; ↔ A = 115 − 2x ;
"B = - 6x + 169 " ; ↔ B = 169 − 6x ;
_____________________________________________________
METHOD 1)
_____________________________________________________
Solve for "x" ; and then plug the solved value for "x" into the expression given for "B" ; to solve for "B"
_____________________________________________________
(115 − 2x) + (169 − 6x) =
115 − 2x + 169 − 6x = ?
→ Combine the "like terms" ; as follows:
+ 115 + 169 = + 284 ;
− 2x − 6x = − 8x ;
_________________________________________________________
And rewrite as:
" − 8x + 284 " ;
_________________________________________________________
→ " - 8x + 284 = 180 " ;
Subtract: "284" from each side of the equation:
→ " - 8x + 284 − 284 = 180 − 284 " ;
to get:
→ " -8x = -104 ;
Divide EACH SIDE of the equation by "-8 " ;
to isolate "x" on one side of the equation; & to solve for "x" ;
→ -8x / -8 = -104/-8 ;
→ x = 13
__________________________________________________________
Now, to find the value of "B" :
__________________________________________________________
"B = - 6x + 169 " ; ↔ B = 169 − 6x ;
↔ B = 169 − 6x ;
= 169 − 6(13) ; ===========> Plug in our "solved value, "13", for "x" ;
= 169 − (78) ;
= 91 ;
B = " 91 " .
__________________________________________________
The answer is: " 91 " .
____________________________________________________
→ " B = 91 " .
____________________________________________________
Now; let us check our answer:
____________________________________________________
→ A + B = 180 ;
____________________________________________________
Plug in our "solved answer" ; which is "91", for "B" ; as follows:
________________________________________________________
→ A + 91 = ? 180? ;
↔ A = ? 180 − 91 ? ;
→ A = ? -89 ? Yes!
________________________________________________________
→ " A = -2x + 115 " ; ↔ A = 115 − 2x ;
Plug in our solved value for "x"; which is: "13" ;
" A = 115 − 2x " ;
→ A = ? 115 − 2(13) ? ;
→ A = ? 115 − (26) ? ;
→ A = ? 29 ? Yes!
_________________________________________________
METHOD 2)
_________________________________________________
Given:
__________________________________________________
" A + B = 180 " ;
"A = -2x + 115 " ; ↔ A = 115 − 2x ;
"B = - 6x + 169 " ; ↔ B = 169 − 6x ;
→ Solve for the value of "B" :
_______________________________________________________
A + B = 180 ;
→ B = 180 − A ;
→ B = 180 − (115 − 2x) ;
→ B = 180 − 1(115 − 2x) ; ==========> {Note the "implied value of "1" } ;
__________________________________________________________
Note the "distributive property" of multiplication:__________________________________________________ a(b + c) = ab + ac ; <u><em>AND</em></u>:
a(b − c) = ab − ac .________________________________________________________
Let us examine the following part of the problem:
________________________________________________________
→ " − 1(115 − 2x) " ;
________________________________________________________
→ " − 1(115 − 2x) " = (-1 * 115) − (-1 * 2x) ;
= -115 − (-2x) ;
= -115 + 2x ;
________________________________________________________
So we can bring down the: " {"B = 180 " ...}" portion ;
→and rewrite:
_____________________________________________________
→ B = 180 − 115 + 2x ;
→ B = 65 + 2x ;
_____________________________________________________
Now; given: "B = - 6x + 169 " ; ↔ B = 169 − 6x ;
→ " B = 169 − 6x = 65 + 2x " ;
______________________________________________________
→ " 169 − 6x = 65 + 2x "
Subtract "65" from each side of the equation; & Subtract "2x" from each side of the equation:
→ 169 − 6x − 65 − 2x = 65 + 2x − 65 − 2x ;
to get:
→ " - 8x + 104 = 0 " ;
Subtract "104" from each side of the equation:
→ " - 8x + 104 − 104 = 0 − 104 " ;
to get:
→ " - 8x = - 104 ;
Divide each side of the equation by "-8" ;
to isolate "x" on one side of the equation; & to solve for "x" ;
→ -8x / -8 = -104 / -8 ;
to get:
→ x = 13 ;
______________________________________________________
Now, let us solve for: " B " ; → {for which this very question/problem asks!} ;
→ B = 65 + 2x ;
Plug in our solved value, " 13 ", for "x" ;
→ B = 65 + 2(13) ;
= 65 + (26) ;
→ B = " 91 " .
_______________________________________________________
Also, check our answer:
_______________________________________________________
Given: "B = - 6x + 169 " ; ↔ B = 169 − 6x = 91 ;
When "x = 13 " ; does: " B = 91 " ?
→ Plug in our "solved value" of " 13 " for "x" ;
→ to see if: "B = 91" ; (when "x = 13") ;
→ B = 169 − 6x ;
= 169 − 6(13) ;
= 169 − (78)______________________________________________________
→ B = " 91 " .
______________________________________________________
Answer:
14 ft
Step-by-step explanation:
Focus on the triangle, and temporarily neglect the 2 ft measurement at the top of the triangle. Then the 2 legs of the triangle have lengths h - 2 ft and 5 ft, and the hypotenuse is 13.
Applying the Pythagorean Theorem, we get:
13^2 = (h - 2)^2 + 5^2, or
169 = h^2 - 4h + 4 + 25, or
144 = h^2 - 4h + 4, or
140 = h^2 - 4h, or, finally,
h^2 - 4h - 140 = 0. We must find the value of h.
I graphed this function on a calculator and found that -10 is a zero. Thus, the function factors into (h + 10)(h - 14) = 0, or h = 14.
The total height of the piece of plywood is 14 ft.
Check this: does a right triangle with legs (14 - 2) and 5 have a hypotenuse of 13? Yes.