Answer:
The answer is
<h2>11.18 cm³</h2>
Explanation:
The volume of a substance when given the density and mass can be found by using the formula

From the question
mass = 123 g
density = 11.3 g/cm³
The volume is

We have the final answer as
<h3>11.18 cm³</h3>
Hope this helps you
Answer:
A molecule's shape strongly affects its physical properties and the way it interacts with other molecules, and plays an important role in the way that biological molecules (proteins, enzymes, DNA, etc.) interact with each other.
Explanation:
The compound crystallizes in the aluminium trifluoride motif. Each fluoride is a doubly bridging ligand. The cobalt centers are octahedral.
CoF3 decomposes upon contact with water to give oxygen:
4 CoF3 + 2 H2O → 4 HF + 4 CoF2 + O2
It reacts with fluoride salts to give the anion [CoF6]3−, which is also features high-spin, octahedral cobalt(III) center.
The question is incomplete, here is the complete question:
The rate constant of a certain reaction is known to obey the Arrhenius equation, and to have an activation energy Ea = 71.0 kJ/mol . If the rate constant of this reaction is 6.7 M^(-1)*s^(-1) at 244.0 degrees Celsius, what will the rate constant be at 324.0 degrees Celsius?
<u>Answer:</u> The rate constant at 324°C is 
<u>Explanation:</u>
To calculate rate constant at two different temperatures of the reaction, we use Arrhenius equation, which is:
![\ln(\frac{K_{324^oC}}{K_{244^oC}})=\frac{E_a}{R}[\frac{1}{T_1}-\frac{1}{T_2}]](https://tex.z-dn.net/?f=%5Cln%28%5Cfrac%7BK_%7B324%5EoC%7D%7D%7BK_%7B244%5EoC%7D%7D%29%3D%5Cfrac%7BE_a%7D%7BR%7D%5B%5Cfrac%7B1%7D%7BT_1%7D-%5Cfrac%7B1%7D%7BT_2%7D%5D)
where,
= equilibrium constant at 244°C = 
= equilibrium constant at 324°C = ?
= Activation energy = 71.0 kJ/mol = 71000 J/mol (Conversion factor: 1 kJ = 1000 J)
R = Gas constant = 8.314 J/mol K
= initial temperature = ![244^oC=[273+244]K=517K](https://tex.z-dn.net/?f=244%5EoC%3D%5B273%2B244%5DK%3D517K)
= final temperature = ![324^oC=[273+324]K=597K](https://tex.z-dn.net/?f=324%5EoC%3D%5B273%2B324%5DK%3D597K)
Putting values in above equation, we get:
![\ln(\frac{K_{324^oC}}{6.7})=\frac{71000J}{8.314J/mol.K}[\frac{1}{517}-\frac{1}{597}]\\\\K_{324^oC}=61.29M^{-1}s^{-1}](https://tex.z-dn.net/?f=%5Cln%28%5Cfrac%7BK_%7B324%5EoC%7D%7D%7B6.7%7D%29%3D%5Cfrac%7B71000J%7D%7B8.314J%2Fmol.K%7D%5B%5Cfrac%7B1%7D%7B517%7D-%5Cfrac%7B1%7D%7B597%7D%5D%5C%5C%5C%5CK_%7B324%5EoC%7D%3D61.29M%5E%7B-1%7Ds%5E%7B-1%7D)
Hence, the rate constant at 324°C is 
Answer:
b. ΔE rxn is a measure of heat
Explanation:
a. ΔHrxn is the heat of reaction. <em>TRUE. </em>ΔHrxn or change in enthalpy of reaction is per definition the change in heat that is involved in a chemical reaction.
b. ΔErxn is a measure of heat. <em>FALSE. </em>Is the change in internal energy of a reaction
c. An exothermic reaction gives heat off heat to the surroundings. <em>TRUE</em>. An exothermic reaction is a chemical reaction that releases heat.
d. Endothermic has a positive ΔH. <em>TRUE. </em>When a process is exothermic ΔH<0 and when the process is endothermic ΔH>0
e. Enthalpy is the sum of a system's internal energy and the product of pressure and volume. <em>TRUE. </em>Under constant pressure and volume the formula is ΔH = ΔE + PV
I hope it helps!