Answer:
b- The heat capacity ratio increases but output temperature don’t change
Explanation:
The heat capacity is the amount of energy required to raise the temperature of a body, by 1 degree. On the other hand, the specific heat capacity is the amount of heat required to raise the temperature of a of unit mass of a material by 1 degree.
Heat capacity is an extensive property meaning its value depends on the amount of material. Specific heat capacity is found by dividing heat capacity by the mass of the sample, thus making it independent of the amount (intensive property). So if the specific heat capacity increases and the mass of the sample remains the same, the heat capacity must increase too. Because of that options c and d that say that heat capacity reamins same are INCORRECT.
On the other hand, in which has to be with options a and b both say that the heat capacity increases which is correct, but about the output temperatures what happens is that if we increase the specific heat capacity of both fluids that are involved in a process of heat exchange in the same value, the value of the output temperatures do not change so only option a is CORRECT.
<span>Boyle's Law is k = PV so
Initial k = 13.0 L x 4.0 atm = 52 L atm
Final kf = 6.5 L x 8 atm = 52 L atm
The gas obeys Boyle's Law
The answer with two significant figures separated by a comma is k = 52, kf = 52.</span>
Solid (ice caps)
Liquid (oceans, rivers, lakes, etc)
Gas (clouds)
Answer:
Option C
Explanation:
The answer to this question will be the third option "It is bendable." Malleable means to be able to change the shape of a object without damaging or breaking it. In this case a malleable solid would be for example drainage pipes. These pipes have curves and different shapes but still remain its product of a metal.
Hope this helps!
Explanation:
When the forces acting on an object are balanced , there is no change in the object's motion.
A force acting on a resting object can cause the object to move.
On Earth, gravity pulls all objects toward the ground.
When a force acts in the opposite direction of another force, the forces counteract each other.
More than one force acting on a falling object can reduce its downward acceleration
Air resistance is caused by molecules of air pushing against a moving object