Answer:
The correct answer is - a. Fluorine is the leaving group in Sarin.
Explanation:
A leaving group is a group that leaves a complete negative charge in heterolytic cleavage when it separates out from the molecule. Sarine reacts with the active site of the enzyme acetylcholinesterase that is essential for nerve transmission.
In this given case, Sarin that is an acid fluoride and ester of methyl phosphonic acid, the fluorine atom is present is the one that leaves with a complete negative charge, therefore, fluorine is the leaving group in Sarin.
Thus, the first option is correct that Fluorine is the leaving group in Sarin.
Explanation:
The given data is as follows.
Mass flow rate of mixture = 1368 kg/hr
in feed = 40 mole%
This means that
in feed = (100 - 40)% = 60%
We assume that there are 100 total moles/hr of gas
in feed stream.
Hence, calculate the total mass flow rate as follows.
40 moles/hr of N_{2}/hr (28 g/mol of
) + 60 moles/hr of
(2 g/mol of
)
= 1120 g/hr + 120 g/hr
= 1240 g/hr
=
(as 1 kg = 1000 g)
= 1.240 kg/hr
Now, we will calculate mol/hr in the actual feed stream as follows.

= 110322.58 moles/hr
It is given that amount of nitrogen present in the feed stream is 40%. Hence, calculate the flow of
into the reactor as follows.

= 44129.03 mol/hr
As 1 mole of nitrogen has 28 g/mol of mass or 0.028 kg.
Therefore, calculate the rate flow of
into the reactor as follows.

= 1235.612 kg/hr
Thus, we can conclude that the the feed rate of pure nitrogen to the mixer is 1235.612 kg/hr.
Answer:
Bears
Explanation:
because starch is heavy and it requires a lot of oxygen in an environment. so having starch in an environment with less oxygen could probably cause fatigue
Iron phosphate when in acidic solution would dissociate into ions namely the iron ions and the phosphate ions. Furthermore, the phosphate ion would react to the hydronium ions forming HPO4^2-. To determine the net ionic equation we do as follows:
FePO4 <---------> Fe3+ + (PO4)3-
(PO4)3- + H3O+ <--------------> HPO4^2- + H2O
Adding the two equations would yield to:
FePO4(s) + H3O+(aq) ⇌ Fe^3+(aq) + HPO4^2−(aq) + H2O(l)