Answer: both options A and D
Explanation:
Half filled and completely filled orbitals are more stable than any other configuration since they are more symmetrical and energy exchange Occurs readily.
So 4f^7& 4f^14 are more stable
Since particles are closer together, solids conduct heat better than liquids or gases. Conduction moves heat through a material. It keeps a fire going by spreading the heat through solid material. Radiation is a method of heat transfer that does not require particles to carry the heat energy.
3 these are 5,6&7 are the significant
Answer:
pH = 11.95≈12
Explanation:
Remember the reaction among aqueous acetic acid (
) and aqueous sodium hydroxide (NaOH)

First step. Need to know how much moles of the substances are present
= 0.0025 mol NaOH
0.003 mol NaOH *
/ 1 mol NaOH = 0.003 mol CH_3COOH[/tex]
NaOH is in excess. Now, how much?
0.003 mole NaOH - 0.0025 mole NaOH = 0.0005 mole NaOH
Then, that amount in excess would be responsable for the pH.
Third step. Know the pH
Remember that pH= -log[H+]
According to the dissociation of water equilibrium
Kw=[H+]*[OH-]= 10^(-14)
The dissociation of NaOH is
NaOH -> 
Now, concentration of OH^{-}[/tex] would be given for the excess of NaOH.
[OH-]= 0.0005 mole / 0.055 L = 0.00909 M
Careful: we have to use the total volumen
Les us to calculate pH
![pH= -log [H+]\\pH= -log \frac{K_w}{[OH-]} \\pH= 11.95](https://tex.z-dn.net/?f=pH%3D%20-log%20%5BH%2B%5D%5C%5CpH%3D%20-log%20%5Cfrac%7BK_w%7D%7B%5BOH-%5D%7D%20%5C%5CpH%3D%2011.95)
Answer:
False.
Explanation:
<u>The given statement asserts a false claim because the equator is the region that receives maximum sunlight</u>. The equator is placed right below the sun and thus, it tends to receive the maximum radiation across the year. While the poles are the coldest regions of the Earth because due to Earth's titled axis, they receive very few sun rays for a certain time of the year. Thus, <u>if we move away from the equator, we are likely to receive less radiation from the sun as the sun keeps getting farther while moving away from the equator</u>.