Answer:
An inert gas is one that does not undergo chemical reactions
Noble gases refers to the right most group of the periodic table composed of helium, neon, argon, krypton, xenon, and radon. As you might have seen as an example in class, some noble gases can form chemical compounds, such as XeF4.
or to say:
Halogens and noble gases are two different groups of elements that can be seen on the periodic table. Halogens are found in group 17 and include fluorine, chlorine, bromine, iodine and astatine. Noble gases make up group 18, and include helium, neon, argon, krypton, xenon and radon.
<span>Tertiary alcohols are the type of alcohols that will undergo acid-catalyzed dehydration under the mildest conditions. Types of tertiary alcohols are 2-methylpropan-2-ol and 2-methylbutan-2-ol. Other types of alcohols are referred to as primary alcohols and secondary alcohols.</span>
Answer:
Kb = 6.22x10⁻⁷
Explanation:
Triethanolamine, C₆H₁₅O₃N, is in equilibrium with water:
C₆H₁₅O₃N(aq) + H₂O(l) ⇄ C₆H₁₅O₃NH⁺(aq) + OH⁻(aq)
Kb is defined from concentrations in equilibrium, thus:
Kb = [C₆H₁₅O₃NH⁺] [OH⁻] / [C₆H₁₅O₃N]
The equilibrium concentration of these compounds could be written as:
[C₆H₁₅O₃N] = 0.486M - X
[C₆H₁₅O₃NH⁺] = X
[OH⁻] = X
pH is -log [H⁺], thus, [H⁺] = 10^-pH = 1.820x10⁻¹¹M
Also, Kw = [OH⁻] ₓ [H⁺];
1x10⁻¹⁴ = [OH⁻] ₓ [H⁺]
1x10⁻¹⁴ = [OH⁻] ₓ [1.820x10⁻¹¹M]
5.495x10⁻⁴M = [OH⁻], that means <em>X = 5.495x10⁻⁴M</em>
Replacing in Kb formula:
Kb = [5.495x10⁻⁴M] [5.495x10⁻⁴M] / [0.486M-5.495x10⁻⁴M]
<em>Kb = 6.22x10⁻⁷</em>
<em></em>
Answer:
AlF₃ is Lewis Acid
CH₃F is Lewis Base
Explanation:
According to Lewis concept ,"those compounds which donate pair of electrons are called as Lewis Base and those accepting pair of electrons are called as Lewis Acid.
In Given Reaction,
<span> AlF</span>₃<span> + CH</span>₃<span>F → CH</span>₃⁺<span> + [AlF</span>₄<span>]</span>⁻
AlF₃ is acting as acid because the octet of Al is not complete, hence it has tendency to accept electrons.
CH₃F is acting as a base because the F atom containing three lone pair of electrons can donate it to Al metal resulting in the formation of electrophile i.e. CH₃⁺.
During summer, the Earth's orbit brings Australia closer to the sun (as compared to Europe during its summer), resulting in an additional 7% solar UV intensity. Coupled with our clearer atmospheric conditions, this means that Australians are exposed to up to 15% more UV than Europeans.