Answer:
The average thickness of the blubber is<u> 0.077 m</u>
Explanation:
Here, we want to calculate the average thickness of the Walrus blubber.
We employ a mathematical formula to calculate this;
The rate of heat transfer(H) through the Walrus blubber = dQ/dT = KA(T2-T1)/L
Where dQ is the change in amount of heat transferred
dT is the temperature gradient(change in temperature) i.e T2-T1
dQ/dT = 220 W
K is the conductivity of fatty tissue without blood = 0.20 (J/s · m · °C)
A is the surface area which is 2.23 m^2
T2 = 37.0 °C
T1 = -1.0 °C
L is ?
We can rewrite the equation in terms of L as follows;
L × dQ/dT = KA(T2-T1)
L = KA(T2-T1) ÷ dQ/dT
Imputing the values listed above;
L = (0.2 * 2.23)(37-(-1))/220
L = (0.2 * 2.23 * 38)/220 = 16.948/220 = 0.077 m
Answer:
please help you are not the intended recipient
Answer:
maximum allowable electrical power=4.51W/m
critical radius of the insulation=13mm
Explanation:
Hello!
To solve this heat transfer problem we must initially draw the wire and interpret the whole problem (see attached image)
Subsequently, consider the heat transfer equation from the internal part of the tube to the external air, taking into account the resistance by convection, and conduction as shown in the attached image
to find the critical insulation radius we must divide the conductivity of the material by the external convective coefficient
