The question is incomplete. The complete question is :
The solid rod shown is fixed to a wall, and a torque T = 85N?m is applied to the end of the rod. The diameter of the rod is 46mm .
When the rod is circular, radial lines remain straight and sections perpendicular to the axis do not warp. In this case, the strains vary linearly along radial lines. Within the proportional limit, the stress also varies linearly along radial lines. If point A is located 12 mm from the center of the rod, what is the magnitude of the shear stress at that point?
Solution :
Given data :
Diameter of the rod : 46 mm
Torque, T = 85 Nm
The polar moment of inertia of the shaft is given by :


J = 207.6 
So the shear stress at point A is :



Therefore, the magnitude of the shear stress at point A is 4913.29 MPa.
Answer:
14.52 minutes
<u>OR</u>
14 minutes and 31 seconds
Explanation:
Let's first start by mentioning the specific heat of air at constant volume. We consider constant volume and NOT constant pressure because the volume of the room remains constant while pressure may vary.
Specific heat at constant volume at 27°C = 0.718 kJ/kg*K
Initial temperature of room (in kelvin) = 283.15 K
Final temperature (required) of room = 293.15 K
Mass of air in room= volume * density= (4 * 5 * 7) * (1.204 kg/m3) = 168.56kg
Heat required at constant volume: 0.718 * (change in temp) * (mass of air)
Heat required = 0.718 * (293.15 - 283.15) * (168.56) = 1,210.26 kJ
Time taken for temperature rise: heat required / (rate of heat change)
Where rate of heat change = 10000 - 5000 = 5000 kJ/hr
Time taken = 1210.26 / 5000 = 0.24205 hours
Converted to minutes = 0.24205 * 60 = 14.52 minutes
I think it’s rationalization.
Hope this helps
Answer:
try to pop it back in good luck im scared for you