1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
daser333 [38]
3 years ago
8

Should aircraft wings have infinite stiffness?

Engineering
2 answers:
Vaselesa [24]3 years ago
5 0
Answer: 2.1.3 The evolution of aircraft wing structures-form follows function Torsional stiffness is fundamental to all aeroelastic approaches unity, 0 will..



HOPE IT HELPS GIVE ME BRAINLIST PLEASE :)

Colt1911 [192]3 years ago
3 0

Answer:

No, they need to be somewhat flexible so that forces such as turbulance don't shear the wing off.

You might be interested in
Consider fully developed laminar flow in a circular pipe. If the viscosity of the fluid is reduced by half by heating while the
gladu [14]

Answer:

The pressure drop across the pipe also reduces by half of its initial value if the viscosity of the fluid reduces by half of its original value.

Explanation:

For a fully developed laminar flow in a circular pipe, the flowrate (volumetric) is given by the Hagen-Poiseulle's equation.

Q = π(ΔPR⁴/8μL)

where Q = volumetric flowrate

ΔP = Pressure drop across the pipe

μ = fluid viscosity

L = pipe length

If all the other parameters are kept constant, the pressure drop across the circular pipe is directly proportional to the viscosity of the fluid flowing in the pipe

ΔP = μ(8QL/πR⁴)

ΔP = Kμ

K = (8QL/πR⁴) = constant (for this question)

ΔP = Kμ

K = (ΔP/μ)

So, if the viscosity is halved, the new viscosity (μ₁) will be half of the original viscosity (μ).

μ₁ = (μ/2)

The new pressure drop (ΔP₁) is then

ΔP₁ = Kμ₁ = K(μ/2)

Recall,

K = (ΔP/μ)

ΔP₁ = K(μ/2) = (ΔP/μ) × (μ/2) = (ΔP/2)

Hence, the pressure drop across the pipe also reduces by half of its initial value if the viscosity of the fluid reduces by half of its value.

Hope this Helps!!!

4 0
3 years ago
A gearbox is needed to provide an exact 30:1 increase in speed, while minimizing the
alekssr [168]

Answer:

answer

Explanation:

4 0
3 years ago
What kind of car is this
juin [17]

Answer:

camaro

Explanation:

5 0
3 years ago
Read 2 more answers
Select all that apply: Contaminated sharps should<br><br> not be<br><br> ----
PIT_PIT [208]

Answer:

Contaminated sharps should not be bent, recapped or removed.

Explanation:

Contaminated sharps are defined as "any contaminated object that can penetrate the skin including, but not limited to, needles, scalpels, broken glass, broken capillary tubes and exposed ends of dental wires".

4 0
3 years ago
A 50 mm diameter shaft is subjected to a static axial load of 160 kN. If the yield stress of the material is 350 MPa, the ultima
zvonat [6]

In order to develop this problem it is necessary to take into account the concepts related to fatigue and compression effort and Goodman equation, i.e, an equation that can be used to quantify the interaction of mean and alternating stresses on the fatigue life of a materia.

With the given data we can proceed to calculate the compression stress:

\sigma_c = \frac{P}{A}

\sigma_c = \frac{160*10^3}{\pi/4*0.05^2}

\sigma_c = 81.5MPa

Through Goodman's equations the combined effort by fatigue and compression is expressed as:

\frac{\sigma_a}{S_e}+\frac{\sigma_c}{\sigma_u}=\frac{1}{Fs}

Where,

\sigma_a=Fatigue limit for comined alternating and mean stress

S_e =Fatigue Limit

\sigma_c=Mean stress (due to static load)

\sigma_u = Ultimate tensile stress

Fs =Security Factor

We can replace the values and assume a security factor of 1, then

\frac{\sigma_a}{320}+\frac{81.5}{400}=\frac{1}{1}

Re-arrenge for \sigma_a

\sigma_a = 254.8Mpa

We know that the stress is representing as,

\sigma_a = \frac{M_c}{I}

Then,

Where M_c=Max Moment

I= Intertia

The inertia for this object is

I=\frac{\pi d^4}{64}

Then replacing and re-arrenge for M_c

M_c = \frac{\sigma_a*\pi*d^3}{32}

M_c = \frac{260.9*10^6*\pi*0.05^3}{32}

M_c = 3201.7N.m

Thereforethe moment that can be applied to this shaft so that fatigue does not occur is 3.2kNm

5 0
4 years ago
Other questions:
  • 100 kg of R-134a at 200 kPa are contained in a piston–cylinder device whose volume is 12.322 m3. The piston is now moved until t
    13·1 answer
  • The popularity of orange juice, especially as a breakfast drink, makes it an important factor in the economy of orange-growing r
    14·1 answer
  • Write multiple if statements:
    6·1 answer
  • Water circulates throughout a house in a hot water heating system. If the water is pumped at a speed of 0.50m/s through a 4.0-cm
    5·1 answer
  • Koch traded Machine 1 for Machine 2 when the fair market value of both machines was $60,000. Koch originally purchased Machine 1
    10·1 answer
  • Use the drop-down menus to choose the correct term or words to complete the statements.
    10·1 answer
  • What is the function of a regulator?
    8·1 answer
  • Please write the command(s) you should use to achieve the following tasks in GDB. 1. Show the value of variable "test" in hex fo
    5·1 answer
  • Roku internet service providet​
    11·1 answer
  • Technician A says that synthetic blend oil has the same service life as that of full synthetic oils. Technician B says that conv
    6·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!