Answer: change the tires
Explanation: you can’t drive on a flat tire
Answer:
a) 3581.15067 kw
b) 95.4%
Explanation:
<u>Given data:</u>
compressor efficiency = 85%
compressor pressure ratio = 10
Air enters at: flow rate of 5m^3/s , pressure = 100kPa, temperature = 300 K
At turbine inlet : pressure = 950 kPa, temperature = 1400k
Turbine efficiency = 88% , exit pressure of turbine = 100 kPa
A) Develop a full accounting of the exergy increase of the air passing through the gas turbine combustor in kW
attached below is a detailed solution to the given question
Answer:
98°C
Explanation:
Total surface area of cylindrical fin = πr² + 2πrl , r = 0.015m; l= 0.1m; π =22/7
22/7*(0.015)² + 22/7*0.015*0.1 = 7.07 X 10∧-4 + 47.1 X 10∧-4 = (54.17 X 10∧-4)m²
Temperature change, t = (50 - 25)°C = 25°C = 298K
Hence, Temperature = 150 X (54.17 X 10∧-4) X 298/123 = 242.14/124 = 2.00K =
∴ Temperature change = 2.00K
But temperature, T= (373 - 2)K = 371 K
In °C = (371 - 273)K = 98°C
Answer:
MIS HIEVOSTES bbbbbbbbbbbb MIS HUEVOTES
This question is incomplete, the complete question is;
Determine the design moment strength (ϕMn) for a W21x73 steel beam with a simple span of 18 ft when lateral bracing for the compression flange is provided at the ends only (i.e., Lb = 18 ft). Report the result in kip-ft.
Use Fy=50 ksi and assume Cb=1.0 (if needed).
Answer: the design moment strength for the W21x73 steel beam is 566.25 f-ft
Explanation:
Given that;
section W 21 x 73 steel beam;
now from the steel table table for this section;
Zx = Sx = 151 in³
also given that; fy = 50 ksi and Cb = 1.0
QMn = 0.9 × Fy × Zx
so we substitute
QMn = 0.9 × 50 × 151
QMn = 6795 k-inch
we know that;
12inch equals 1 foot
so
QMn = 6795 k-inch / 12
QMn = 566.25 f-ft
Therefore the design moment strength for the W21x73 steel beam is 566.25 f-ft