Answer:
a)We know that acceleration a=dv/dt
So dv/dt=kt^2
dv=kt^2dt
Integrating we get
v(t)=kt^3/3+C
Puttin t=0
-8=C
Putting t=2
8=8k/3-8
k=48/8
k=6
Answer:
Impossible.
Explanation:
The ideal Coefficient of Performance is:


The real Coefficient of Performance is:


Which leads to an absurds, since the real Coefficient of Performance must be equal to or lesser than ideal Coefficient of Performance. Then, the cycle is impossible, since it violates the Second Law of Thermodynamics.
Answer:
over a rive or fast moving water or canyon
Explanation: you would use a suspension bridge in an area where you can't put supports down.
The question is not complete. We are supposed to find the average value of v_o.
Answer:
v_o,avg = 0.441V
Explanation:
Let t1 and t2 be the start and stop times of the output waveforms. Thus, from the diagram i attached, using similar triangles, we have;
3/(T/4) = 0.7/t1
So, 12/T = 0.7/t1
So, t1 = 0.7T/12
t1 = 0.0583 T
Also, from symmetry of triangles,
t2 = T/2 - t1
So, t2 = T/2 - 0.0583 T
t2 = 0.4417T
Average of voltage output is;
v_o,avg = (1/T) x Area under small triangle
v_o,avg = (1/T) x (3 - 0.7) x (T/4 - t1)
v_o,avg = (1/T) x (2.3) x (T/4 - 0.0583 T)
v_o,avg = (1/T) x 2.3 x 0.1917T
T will cancel out to give;
v_o,avg = 0.441V