1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
PolarNik [594]
3 years ago
11

8. When supplying heated air for a building, one often chooses to mix in some fresh outside air with air that has been heated fr

om the building as it passes through the furnace. An insulated mixing chamber is used to combine two streams of air to be used in a building. One stream of air, brought from the outside, enters at 2 kg/s, at a pressure of 120 kPa, and a temperature of 5oC. The second stream of air, coming from the building’s furnace, has a mass flow rate of 8 kg/s, a pressure of 120 kPa, and a temperature of 35oC. The combined stream is then delivered to the warm space at 120 kPa. Determine the rate of entropy generation for this mixing chamber.

Engineering
1 answer:
Afina-wow [57]3 years ago
5 0

Answer:

Check the explanation

Explanation:

Kindly check the attached images below to see the step by step explanation to the question above.

You might be interested in
Where the velocity is highest in the radial direction? Why?
posledela

Answer:

In the center and directed away from it.

Explanation:

The direction along the radius and directed away from the center is known as radial direction.

The velocity is highest in the radial direction pointing away from the center, this is because of the reason that  when the particle executes its motion in the direction that is radial, then it is not acted upon by any force that opposes the motion of the particle and thus there is no obstruction to the velocity of the particle and it is therefore, the highest in the radial direction.

8 0
3 years ago
Describe the algorithm you use for looking up a person’s telephone number in the phone book. The input is person’s name; the out
Stella [2.4K]

Answer:

The Algorithm for finding a number from a phone book with the person's name as the input and the phone number as output is as follows:

1. Try to remember the name, i.e last name first and first name last, Also make sure you get the spelling right.

2. Using the first letter of the last name, locate the appropriate alphabetical section in which the name should appear.

3. Using the second letter of the last name, find the subsection of first and second letters combined, in the appropriate order, in which the name should appear. (If the last name consists of only two letters, find the appropriate first name.)

4. Using the third letter, find the possible names in a subsection of the first three letters in the correct order. Continue this step with x+1 letters of the name until you have a subsection of names exactly matching the last name of the person whose number you are trying to locate. (x is the number of letters used in the previous step, consistently.) If there is only one of the last name, (check for duplicates) identify the number, and return phone number information.

5. Begin the second step using the first letter of the first name, but limit the section to only those exactly matching the last name. Continue to step 4, again focusing on the first name only within the set of exactly matching last names.

6. When both first and last name match the name you are locating, check for duplicates. IF there are no duplicates, return phone number information.

Explanation:

People's names are generally arranged in phone books in alphabetical order by the last name of the person. The first name of the person is listed after the last name so that people of the same last name can be differentiated.

7 0
3 years ago
Read 2 more answers
A sample of wastewater is diluted 10 times. The diluted solution has an ultimate biochemical oxygen demand (BOD), Lo, of 30 mg/L
zzz [600]

Answer:

474.59 mg/L

Explanation:

Given that

BOD = 30 mg/L

Original BOD  = 30 mg/L × dilution factor

Original BOD  = 30 mg/L  × 10 = 300 mg/L

L_o = \frac{BOD}{1-e^{-5t}}

here L_o is the ultimate BOD ; BOD is the  biochemical oxygen demand ;  t = 0.20 /day

L_o = \frac{300}{1-e^{-5(0.20)}}

L_o = 474.59 \ mg/L

3 0
3 years ago
Air entrainment is used in concrete to: __________.
Dahasolnce [82]

The answer is number 2) Increase the resistance of the concrete to freeze-thaw damage.

5 0
3 years ago
(35-39) A student travels on a school bus in the middle of winter from home to school. The school bus temperature is 68.0° F. Th
arlik [135]

Answer:

The net energy transfer from the student's body during the 20-min ride to school is 139.164 BTU.

Explanation:

From Heat Transfer we determine that heat transfer rate due to electromagnetic radiation (\dot Q), measured in BTU per hour, is represented by this formula:

\dot Q = \epsilon\cdot A\cdot \sigma \cdot (T_{s}^{4}-T_{b}^{4}) (1)

Where:

\epsilon - Emissivity, dimensionless.

A - Surface area of the student, measured in square feet.

\sigma - Stefan-Boltzmann constant, measured in BTU per hour-square feet-quartic Rankine.

T_{s} - Temperature of the student, measured in Rankine.

T_{b} - Temperature of the bus, measured in Rankine.

If we know that \epsilon = 0.90, A = 16.188\,ft^{2}, \sigma = 1.714\times 10^{-9}\,\frac{BTU}{h\cdot ft^{2}\cdot R^{4}}, T_{s} = 554.07\,R and T_{b} = 527.67\,R, then the heat transfer rate due to electromagnetic radiation is:

\dot Q = (0.90)\cdot (16.188\,ft^{2})\cdot \left(1.714\times 10^{-9}\,\frac{BTU}{h\cdot ft^{2}\cdot R^{4}} \right)\cdot [(554.07\,R)^{4}-(527.67\,R)^{4}]

\dot Q = 417.492\,\frac{BTU}{h}

Under the consideration of steady heat transfer we find that the net energy transfer from the student's body during the 20 min-ride to school is:

Q = \dot Q \cdot \Delta t (2)

Where \Delta t is the heat transfer time, measured in hours.

If we know that \dot Q = 417.492\,\frac{BTU}{h} and \Delta t = \frac{1}{3}\,h, then the net energy transfer is:

Q = \left(417.492\,\frac{BTU}{h} \right)\cdot \left(\frac{1}{3}\,h \right)

Q = 139.164\,BTU

The net energy transfer from the student's body during the 20-min ride to school is 139.164 BTU.

7 0
3 years ago
Other questions:
  • When fermentation units are operated with high aeration rates, significant amounts of water can be evaporated into the air passi
    13·1 answer
  • Determine the magnitude of the resultant force and the moment about the origin. Note: the symbol near the 140 N-m moment are not
    15·1 answer
  • Create a program that calculates the monthly payments on a loan using Decimal & LC Console SEE Sanple Run Attached Specifica
    14·1 answer
  • Discuss the chemical and physical properties of crude oil​
    6·1 answer
  • What are the desired characteristics or values for the following parameters of an ideal amplifier?o Phase change as a function o
    10·1 answer
  • What organization which fire codes
    13·2 answers
  • Determine the average power, complex power and power factor (including whether it is leading or lagging) for a load circuit whos
    9·2 answers
  • Many of the products that we eat and drink are advanced manufactured products. Is this statement TRUE or FALSE?
    12·1 answer
  • Witch one is cuter compared to ur opinion calico kitten or grey?​
    5·1 answer
  • The product of two factors is 4,500. If one of the factors is 90, which is the other factor?
    15·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!