1. a b c
2. a b c
3. a b c
4. a b c
5. a b c
then she eliminated 1 choice in 1 and 2, say as follows
1. b c
2. a b
3. a b c
4. a b c
5. a b c
Probability of answering correctly the first 2, and at least 2 or the remaining 3 is
P(answering 1,2 and exactly 2 of 3.4.or 5.)+P(answering 1,2 and also 3,4,5 )
P(answering 1,2 and exactly 2 of 3.4.or 5.)=
P(1,2,3,4 correct, 5 wrong)+P(1,2,3,5 correct, 4 wrong)+P(1,2,4,5 correct, 3 wrong)
also P(1,2,3,4 c, 5w)=P(1,2,3,5 c 4w)=P(1,2,4,5 c 3w )
so
P(answering 1,2 and exactly 2 of 3.4.or 5.)=3*P(1,2,3,4)=3*1/2*1/2*1/3*1/3*2/3=1/4*2/9=2/36=1/18
note: P(1 correct)=1/2
P(2 correct)=1/2
P(3 correct)=1/3
P(4 correct)=1/3
P(5 wrong) = 2/3
P(answering 1,2 and also 3,4,5 )=1/2*1/2*1/3*1/3*1/3=1/108
Ans: P= 1/18+1/108=(6+1)/108=7/108
Answer:
sure
Step-by-step explanation:
The inverse relation would be each of these ordered pairs switched.
{(1, -4), (3, -4), (-8, 0), (-9, 8)}
This is because when you create an inverse equation, all of the inputs become outputs and all of the outputs become inputs. Therefore, the ordered pairs simply switch.
Use the chain rule.
Let u = 25sin²(x), such that dy/dx = dy/du · du/dx


V2^2 = V1^2 - 2gh
<span>=> 0 = 44^2 - 2 (32.2) h </span>
<span>=> h = 44^2 / 64.4 = 30.062 ft</span>