Answer:
1. 0.0154mole of PbS
2. Double displacement reaction
Explanation:
First, let write a balanced equation for the reaction. This is illustrated below:
Pb(CH3COO)2 + H2S —> PbS + 2 CH3COOH
Molar Mass of Pb(CH3COO)2 = 207 + 2(12 + 3 + 12 + 16 +16) = 207 + 2(59) = 207 + 118 = 325g
Mass of Pb(CH3COO)2 = 5g
Number of mole = Mass /Molar Mass
Number of mole of Pb(CH3COO)2 = 5/325 = 0.0154mole
From the equation,
1mole of Pb(CH3COO)2 produced 1mole of PbS.
Therefore, 0.0154mole of Pb(CH3COO)2 will also produce 0.0154mole of PbS
2. The name of the reaction is double displacement reaction since the ions in the two reactants interchange to form two different products
15.63 mol. You need 15.63 mol HgO to produce 250.0 g O_2.
<em>Step 1</em>. Convert <em>grams of O_2 to moles of O_2</em>
Moles of O_2 = 250.0 g O_2 × (1 mol O_2/32.00 g O_2) = 7.8125 mol O_2
<em>Step 2</em>. Use the molar ratio of HgO:O_2 to convert <em>moles of O_2 to moles of HgO
</em>
Moles of HgO = 0.8885 mol O_2 × (2 mol HgO/1 mol O_2) = <em>15.63 mol HgO</em>
Answer:
Position D
Explanation:
One fourth of the Moon will be visible from Earth when the Moon is in position D. The reason why this is the right position is that the Moon will be in a position where the majority of its surface that is lighted by the Sun is facing the Sun. On the other hand, the angle is just right that about one quarter of the lighted part of the Moon is also facing the Earth. This will result in a perception from the Earth's view point that the Moon is lighted at one quarter of its surface.