Answer:
C)You should use the thin cooking twine.
Explanation:
A)You can choose either because they are the same length and will produce the same wave speed.
B)You should use the heavy rope.
C)You should use the thin cooking twine.
The speed of wave in a string is given by the following formula:
|
| = 
Where |
| = speed of wave,
= tension in the string, and μ = mass per length of the string.
<em>Even though the two strings have the same length, the μ (mass/length) for the heavy rope will be more than the that of a thin rope. Consequently, the </em>
<em>:μ for the thin rope will be higher than that of the heavy rope and as such, gives a bigger |</em>
<em>|. </em>
Therefore, the thin rope should be used in order to get a faster wave speed in the telephone.
The correct option is C.
Answer:
Centripetal acceleration.
Explanation:
Centripetal acceleration is a property of a body moving in a uniform circular path and it is directed radially towards the center of the circle in which body is rotating.
The force which causes this acceleration is centripetal force which is also directed towards the center of the circle and pulls the body towards its center.
It is calculated through following formula

where v is velocity and r is the radius of the circle.
We have that the most stable nuclei are the ones with the highest average binding energy. We see that Nitrogen has a mass number of 15 and that in this region of the graph average binding energy is low. Silver and Gold are along a line where there is a constant decline in average binding energy; silver has more than gold. However, we see that at the start of this decline, there is Fe 56. This region has the elements with the highest average binding energy; Nickel with a mass number of 58 is right there and thus it is the most stable nucleus out of the listed ones.
Answer:
2.84 seconds
Explanation:
t = ?
distance = 125
Velocity origianal = 60 m/hr = 88 ft/s
AVERAGE velocity = 88/2 = 44 ft/s
44 t = 125
t = 125/44 = 2.84 s
Answer:
1. Largest force: C; smallest force: B; 2. ratio = 9:1
Explanation:
The formula for the force exerted between two charges is

where K is the Coulomb constant.
q₁ and q₂ are also identical and constant, so Kq₁q₂ is also constant.
For simplicity, let's combine Kq₁q₂ into a single constant, k.
Then, we can write

1. Net force on each particle
Let's
- Call the distance between adjacent charges d.
- Remember that like charges repel and unlike charges attract.
Define forces exerted to the right as positive and those to the left as negative.
(a) Force on A

(b) Force on B

(C) Force on C

(d) Force on D

(e) Relative net forces
In comparing net forces, we are interested in their magnitude, not their direction (sign), so we use their absolute values.

2. Ratio of largest force to smallest
