1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Fofino [41]
3 years ago
12

You are making a telephone out of two aluminum cans and some string. You can choose between two types of string: a 2-m length of

thin cooking twine or a 2-m length of heavy rope, both used at the same tension. Which type of string should you use so that you have the fastest wave speed in your telephone?
Physics
1 answer:
Nataliya [291]3 years ago
3 0

Answer:

C)You should use the thin cooking twine.

Explanation:

A)You can choose either because they are the same length and will produce the same wave speed.

B)You should use the heavy rope.

C)You should use the thin cooking twine.

The speed of wave in a string is given by the following formula:

|v| = \sqrt{\frac{F_T}{u} }

Where |v| = speed of wave, F_T = tension in the string, and μ = mass per length of the string.

<em>Even though the two strings have the same length, the μ (mass/length) for the heavy rope will be more than the that of a thin rope. Consequently, the </em>F_T<em>:μ for the thin rope will be higher than that of the heavy rope and as such, gives a bigger |</em>v<em>|. </em>

Therefore, the thin rope should be used in order to get a faster wave speed in the telephone.

The correct option is C.

You might be interested in
A 0.01 kg spring toy is compressed 0.02 m and released vertically. The toy is measured to reach 0.25 m in the air. Determine the
Scorpion4ik [409]

Answer:

122.5 N/m

Explanation:

According to the law of conservation of energy, if there is no air resistance or frictional forces, the initial elastic potential energy of the spring toy is entirely converted into gravitational potential energy when the toy reaches the highest point.

Therefore, we can write:

\frac{1}{2}kx^2=mgh

where the term on the left is the initial elastic potential energy while the term on the right is the gravitational potential energy, and where

k is the spring constant

x = 0.02 m is the compression of the spring

m = 0.01 kg is the mass of the toy

h = 0.25 m is the height reached by the toy

g=9.8 m/s^2 is the acceleration due to gravity

Solving for k,

k=\frac{2mgh}{x^2}=\frac{2(0.01)(9.8)(0.25)}{(0.02)^2}=122.5 N/m

8 0
3 years ago
What are the physics terms behind watching TV?
GalinKa [24]
Everyone knows that one of their favorite past times is sitting in front of the television and watching movies, shows, or playing video games. However with this almost motionless, lazy activity comes a great deal of static physics and mechanics.

When you are sitting down enjoying whatever show it is you may be watching, you actually have several forces acting on you concurrently. For example, by sitting on the couch with no extra weight on you, your weight is equivalent to the normal force, or the force of the couch on you. In addition to the force of the couch of you, if you are leaning on an arm or laying down, a similar force acts on you, except at an angle or incline. The general rule for laying on the couch watching television is that whatever force you exert on an object, that object exerts the same force in the opposite direction, or 180 degrees around.

3 0
3 years ago
What equation can be used to calculate either wavelength, frequency or speed?
lakkis [162]

Answer:

speed = wavelength * frequency

Explanation:

Thenks and mark me brainliest :)

7 0
3 years ago
A wheel rotating about a fixed axis has a constant angular acceleration of 4.0 rad/s2. In a 4.0-s interval the wheel turns throu
anastassius [24]

Answer:

a. 3 s.

Explanation:

Given;

angular acceleration of the wheel, α = 4 rad/s²

time of wheel rotation, t = 4 s

angle of rotation, θ = 80 radians

Apply the kinematic equation below,

\theta = \omega_1 t \ + \ \frac{1}{2} \alpha t^2\\\\80 = 4\omega_1 + \frac{1}{2}*4*4^2\\\\80 = 4\omega_1 + 32\\\\ 4\omega_1 = 48\\\\ \omega_1 = \frac{48}{4}\\\\ \omega_1 = 12 \ rad/s

Given initial angular velocity, ω₀ = 0

Apply the kinematic equation below;

\omega_1 = \omega_o + \alpha t_1\\\\12 = 0 + 4t\\\\4t = 12\\\\t = \frac{12}{4}\\\\t = 3 \ s

Therefore, the wheel had been in motion for 3 seconds.

a. 3 s.

8 0
3 years ago
what is the difference between kinetic energy and random motion of a cylider of oxygen carried by a car and one standing on a pl
pochemuha

Answer:

See explanation below

Explanation:

If we are talking about the kinetic energy of the cylinder of oxygen:

The kinetic energy possessed by any object is given by

K=\frac{1}{2}mv^2

where

m is the mass of the object

v is its speed

In this case, we have one cylinder carried by a car and one standing on a platform: this means that the speed of the cylinder carried by the car will be different from zero (and so also its kinetic energy will be different from zer), while the speed of the cylinder standing on the platform will be zero (and so its kinetic energy also zero). Therefore, the kinetic energy of the cylinder carried by the car will be larger than that standing on a platform.

Instead, if we are talking about the kinetic energy due to the random motion of the molecules of oxygen inside the cylinder:

The kinetic energy of the molecules in a gas is directly proportional to the absolute temperature of the gas:

K=\frac{3}{2}kT

where k is called Boltzmann constant and T is the absolute temperature of the gas. Therefore, we see that K does not depend on whether the gas is in motion or not, but only on its temperature - therefore, in this case there is no difference between the kinetic energy of the cylinder carried by the car and that standing on the platform (assuming they are at the same temperature)

6 0
3 years ago
Other questions:
  • A conical container of radius 6 ft and height 18 ft is filled to a height of 11 ft of a liquid weighing 64.4 lb divided by ft cu
    15·1 answer
  • A large, semi-truck hauling a full load and a small car are traveling in the same direction. As they approach a sharp curve in t
    15·1 answer
  • Two cars move down a hill at a constant velocity. Car c is much larger than car d. The car that has a greater momentum is:
    14·2 answers
  • A track coach records how long it takes a sprinter to run 100 meters the track coach is recording what dimension of behavior
    15·1 answer
  • A monkey has a bit of a heavy for on the gas pedal. As soon as the light turns green the monkey pushes the gas pedal to the floo
    14·1 answer
  • An experimental apparatus has two parallel horizontal metal rails separated by 1.0 m. A 3.0 Ω resistor is connected from the lef
    12·2 answers
  • At its maximum speed, a typical snail moves about 4.0 m in 5.0 min.
    7·1 answer
  • Can someone please help me with this physics question? I'm desperate!
    11·1 answer
  • In each of the following cases, determine where the car has no
    15·1 answer
  • True or False: Any wavelength of light would work for this experiment. Explain your response, including the term quantum or quan
    8·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!