Answer:
122.5 N/m
Explanation:
According to the law of conservation of energy, if there is no air resistance or frictional forces, the initial elastic potential energy of the spring toy is entirely converted into gravitational potential energy when the toy reaches the highest point.
Therefore, we can write:

where the term on the left is the initial elastic potential energy while the term on the right is the gravitational potential energy, and where
k is the spring constant
x = 0.02 m is the compression of the spring
m = 0.01 kg is the mass of the toy
h = 0.25 m is the height reached by the toy
is the acceleration due to gravity
Solving for k,

Everyone knows that one of their favorite past times is sitting in front of the television and watching movies, shows, or playing video games. However with this almost motionless, lazy activity comes a great deal of static physics and mechanics.
When you are sitting down enjoying whatever show it is you may be watching, you actually have several forces acting on you concurrently. For example, by sitting on the couch with no extra weight on you, your weight is equivalent to the normal force, or the force of the couch on you. In addition to the force of the couch of you, if you are leaning on an arm or laying down, a similar force acts on you, except at an angle or incline. The general rule for laying on the couch watching television is that whatever force you exert on an object, that object exerts the same force in the opposite direction, or 180 degrees around.
Answer:
speed = wavelength * frequency
Explanation:
Thenks and mark me brainliest :)
Answer:
a. 3 s.
Explanation:
Given;
angular acceleration of the wheel, α = 4 rad/s²
time of wheel rotation, t = 4 s
angle of rotation, θ = 80 radians
Apply the kinematic equation below,

Given initial angular velocity, ω₀ = 0
Apply the kinematic equation below;

Therefore, the wheel had been in motion for 3 seconds.
a. 3 s.
Answer:
See explanation below
Explanation:
If we are talking about the kinetic energy of the cylinder of oxygen:
The kinetic energy possessed by any object is given by

where
m is the mass of the object
v is its speed
In this case, we have one cylinder carried by a car and one standing on a platform: this means that the speed of the cylinder carried by the car will be different from zero (and so also its kinetic energy will be different from zer), while the speed of the cylinder standing on the platform will be zero (and so its kinetic energy also zero). Therefore, the kinetic energy of the cylinder carried by the car will be larger than that standing on a platform.
Instead, if we are talking about the kinetic energy due to the random motion of the molecules of oxygen inside the cylinder:
The kinetic energy of the molecules in a gas is directly proportional to the absolute temperature of the gas:

where k is called Boltzmann constant and T is the absolute temperature of the gas. Therefore, we see that K does not depend on whether the gas is in motion or not, but only on its temperature - therefore, in this case there is no difference between the kinetic energy of the cylinder carried by the car and that standing on the platform (assuming they are at the same temperature)