A monobromination reaction of an alkane involves an alkane and bromine. The position of the hydrogen atom that will be substituted by the bromine free radical will depend on the order of the alkane. The bromine will attach to the carbon that has the most substituents.
We assume that this gas is an ideal gas. We use the ideal gas equation to calculate the amount of the gas in moles. It is expressed as:
PV = nRT
(672) (1/760) (36.52) = n (0.08206) ( 68 +273.15)
n = 1.15 mol of gas
Hope this answers the question. Have a nice day.
Answer:
Electrolysis of water is the process of using electricity to decompose water into oxygen and hydrogen gas. Hydrogen gas released in this way can be used as hydrogen fuel, or remixed with the oxygen to create oxyhydrogen gas, which is used in welding and other applications.Ordinarily, the freezing point of water and melting point is 0 °C or 32 °F. The temperature may be lower if supercooling occurs or if there are impurities present in the water which could cause freezing point depression to occur. Under certain conditions, water may remain a liquid as cold as -40 to -42°
Explanation:
Answer:
I think beaker three will take longer to boil since there is more water present,compared to the other beakers
Answer:
K3PO4
Explanation:
Recall that colligative properties depends on the number of particles present. The greater the number of particles present, the greater the degree of colligative properties of the solution. Let us look at each option individually;
SrCr2O7-------> Sr^2+ + Cr2O7^2- ( 2 particles)
C4H11N (not ionic in nature hence it can not dissociate into ions)
K3PO4-------> 3K^+ + PO4^3- (4 particles)
Rb2CO3-------> 2Rb^+ + CO3^2- (3 particles)
Hence K3PO4 has the greatest number of particles and will display the greatest colligative effect.