Answer:
v1 = 15.90 m/s
v2 = 8.46 m/s
mechanical energy before collision = 32.4 J
mechanical energy after collision = 32.433 J
Explanation:
given data
mass m = 0.2 kg
speed = 18 m/s
angle = 28°
to find out
final velocity and mechanical energy both before and after the collision
solution
we know that conservation of momentum remain same so in x direction
mv = mv1 cosθ + mv2cosθ
put here value
0.2(18) = 0.2 v1 cos(28) + 0.2 v2 cos(90-28)
3.6 = 0.1765 V1 + 0.09389 v2 ................1
and
in y axis
mv = mv1 sinθ - mv2sinθ
0 = 0.2 v1 sin28 - 0.2 v2 sin(90-28)
0 = 0.09389 v1 - 0.1768 v2 .......................2
from equation 1 and 2
v1 = 15.90 m/s
v2 = 8.46 m/s
so
mechanical energy before collision = 1/2 mv1² + 1/2 mv2²
mechanical energy before collision = 1/2 (0.2)(18)² + 0
mechanical energy before collision = 32.4 J
and
mechanical energy after collision = 1/2 (0.2)(15.90)² + 1/2 (0.2)(8.46)²
mechanical energy after collision = 32.433 J
Answer:
2.9 M
Explanation:
The concentration-time equation for a second order reaction is:
1/[A] = kt + 1/[A°]
Where,
A = concentration remaining at time, t
A° = initial concentration
k = rate constant
1/[A] = (1.80 x 10^-3) * (45.6) + 1/3.81
1/[A] = 0.345
= 1/0.345
= 2.9 M.
264Ns
Explanation:
Given parameters:
Time of the push = 3s
Force of push = 88N
Unknown:
Impulse = ?
Solution:
Impulse is defined as the change in momentum of a body when force acts on it.
Impulse = Force x time
Inputting the parameters:
Impulse = 88 x 3 = 264Ns
Learn more:
Momentum brainly.com/question/9484203
#learnwithBrainly
19,999,985 nomas creo y soy positivo que si es pero puedes ablar ingles
The three phases of matter differ in properties just because of the proximity of their molecules. The solid phase is the most organized of all. Its atoms are compactly arranged together and has the strongest intermolecular forces to keep them together. This is why they have a definite shape and volume. The liquid phase have molecules that are far away from each other, but not as far as that of the gas phase. The liquid and gas phases can be lumped into one group called fluids because they have the same property - they take the shape and volume of their container.
To make an analogy, see the attached picture for your reference.