1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
zysi [14]
3 years ago
14

An astronaut finds herself in a predicament in which she has become untethered from her shuttle. She figures that she could get

back to her shuttle by throwing one of three objects she possesses in the opposite direction of the shuttle. The masses of the objects are 5.3 kg, 7.9 kg, and 10.5 kg, respectively. She is able to throw the first object with a speed of 15.00 m/s, the second with a speed of 11.2 m/s, and the third with a speed of 7.0 m/s. If the mass of the astronaut and her remaining gear is 75.0 kg, determine the final speed of the astronaut with respect to the shuttle if she were to throw each object successively, starting with the least massive and ending with the most massive. Assume that the speeds described are those measured in the rest frame of the astronaut.
Physics
1 answer:
Blizzard [7]3 years ago
7 0

In order to solve the problem, it is necessary to apply the concepts related to the conservation of momentum, especially when there is an impact or the throwing of an object.

The equation that defines the linear moment is given by

mV_i = (m-m_O)V_f - m_OV_O

where,

m=Total mass

m_O = Mass of Object

V_i = Velocity before throwing

V_f = Final Velocity

V_O = Velocity of Object

Our values are:

m_1=5.3kgm_2=7.9kg\\m_3=10.5kg\\m_A=75kg\\m_{Total}=m=98.7Kg

Solving to find the final speed, after throwing the object we have

V_f=\frac{mV_0+m_TV_O}{m-m_O}

We have three objects. For each object a launch is made so the final mass (denominator) will begin to be subtracted successively. In addition, during each new launch the initial speed will be given for each object thrown again.

That way during each section the equations should be modified depending on the previous one, let's start:

A) 5.3Kg\rightarrow 15m/s

V_{f1}=\frac{mV_0+m_TV_O}{m-m_O}

V_{f1}=\frac{(98.7)*0+5.3*15}{98.7-5.3}

V_{f1}=0.8511m/s

B) 7.9Kg\rightarrow 11.2m/s

V_{f2}=\frac{mV_{f1}+m_TV_O}{m-m_O}

V_{f2}=\frac{(98.7)(0.8511)+(7.9)(11.2)}{98.7-5.3-7.9}

V_{f2} = 2.0173m/s

C) 10.5Kg\rightarrow 7m/s

V_{f3}=\frac{mV_{f2}+m_TV_O}{m-m_O}

V_{f3}=\frac{(98.7)(2.0173)+(10.5)(7)}{98.7-5.3-7.9-10.5}

V_{f3} = 3.63478m/s

Therefore the final velocity of astronaut is 3.63m/s

You might be interested in
An object is 10 cm from thé mirror, its height is 1 cm and thé focal length is 5 cm. What is thé distance from thé mirror? S1= _
Viefleur [7K]
Note: I assume the mirror is concave, so that its focal length is positive (it is not specified in the text)

1a) We can use the mirror equation to find the distance of the image from the mirror:
\frac{1}{f}= \frac{1}{p}+ \frac{1}{q}
where 
f=5 cm is the focal length
p=10 cm is the distance of the object from the mirror
q is the distance of the image from the mirror.

Rearranging the equation, we find
\frac{1}{q}= \frac{1}{f}- \frac{1}{p}= \frac{1}{5}- \frac{1}{10}= \frac{1}{10 cm}
so, the distance of the image from the mirror is q=10 cm.

1b) The image height is given by the magnification equation:
\frac{h_i}{h_o}=- \frac{p}{q}
where h_i is the heigth of the image and h_o=1 cm is the height of the object. By rearranging the equation and using p and q, we find
h_i=-h_o  \frac{p}{q}=-(1 cm) \frac{10 cm}{10 cm}=-1 cm
and the negative sign means the image is inverted.

2) As before, we can find the distance of the image from the mirror by using the mirror equation:
\frac{1}{f}= \frac{1}{p}+ \frac{1}{q}
Rearranging it, we find
\frac{1}{q}= \frac{1}{f}- \frac{1}{p}= \frac{1}{2}- \frac{1}{10}= \frac{4}{10 cm}
so, the distance of the image from the mirror is
q= \frac{10}{4}cm= 2.5 cm

3) As before, we find the distance of the image from the mirror by using the mirror equation:
\frac{1}{f}= \frac{1}{p}+ \frac{1}{q}
Rearranging it, we find
\frac{1}{q}= \frac{1}{f}- \frac{1}{p}= \frac{1}{2}- \frac{1}{10}= \frac{4}{10 cm}
so, the distance of the image from the mirror is
q= \frac{10}{4}cm= 2.5 cm

And now we can use the magnification equation to find the image height:
\frac{h_i}{h_o}=- \frac{p}{q}
Rearranging it, we find
h_i=-h_o \frac{p}{q}=-(3cm) \frac{10 cm}{2.5 cm}=-12 cm
and the negative sign means the image is inverted.
5 0
3 years ago
Jasmine is late to science class and misses the very beginning of notes for the day. These are Jasmine’s notes: –Round objects t
SpyIntel [72]

Answer:

d

Explanation:

8 0
3 years ago
Read 2 more answers
Compared to Earth's moon, the moons of Mars are
Mice21 [21]
I think is b I think
7 0
3 years ago
The pressure of a gas is 15 atm in a 5L cylinder. If the volume of the cylinder is depressed to 3L, What is the new pressure exe
disa [49]
P1v1=p2v2. 15x5=p2x3
5 0
3 years ago
Weight is measured with a ___________. <br> Question 4 options: <br> A. Balance <br> B. Scale
kap26 [50]

Answer: B

Explanation: Scale

4 0
3 years ago
Read 2 more answers
Other questions:
  • Which is true regarding the penetrating power of radiation? (2 points) Select one:
    14·1 answer
  • What are two different units that represent work?
    12·1 answer
  • Which process is most responsible for the increase in early earths atmospheric oxygen levels
    5·1 answer
  • Which statement best defines energy?
    10·1 answer
  • A steel bar that is at 10 ° c is 5 meters long, a bar for heated to 120 ° c, how long is that bar? Α = 1.2.10- ° c
    13·1 answer
  • Un bloque de 25 n se encuentra suspendido por un hilo al techo vitamina la tensión que aparece en el hilo
    8·1 answer
  • The ultrasound is reflected from the seafloor back to the submarine.
    10·1 answer
  • An object 20cm high is placed at a distance of 100 cm from a plane mirror. The height of the image will be.
    14·1 answer
  • Explain how thermal energy (temperature) affects chemical changes.
    9·1 answer
  • What is the difference in the speed of the generator with a small magnet and a generator with a large magnet?
    9·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!