<em>It's a test on Geography!
</em>
Answer:
Explanation:
Given
Diameter of Pulley=10.4 cm
mass of Pulley(m)=2.3 kg
mass of book
height(h)=1 m
time taken=0.64 s


![a=4.88 m/s^2and [tex]a=\alpha r](https://tex.z-dn.net/?f=a%3D4.88%20m%2Fs%5E2%3C%2Fp%3E%3Cp%3Eand%20%5Btex%5Da%3D%5Calpha%20r)
where
is angular acceleration of pulley


And Tension in Rope


T=8.364 N
and Tension will provide Torque




Thus mass is uniformly distributed or some more towards periphery of Pulley
#1
As we are increasing the frequency in the simulation the wavelength is decreasing
So if speed remains constant then wavelength and frequency depends inversely on each other
If we are in boat and and moving over very small wavelengths then these small wavelength will be encountered continuously by the boat in short interval of times
#2
As we are changing the amplitude in the simulation there is no change in the speed frequency and wavelength.
So amplitude is independent of all these parameter
Amplitude of wave will decide the energy of wave
So light of greater intensity is the light of larger amplitude
#3
In our daily life we deal with two waves
1 sound waves
2 light waves
Angstrom = 10^-10 m
for nucleus size are used fermi (femtometer 10^-15 m )
Explanation:
(a) For an isothermal process, work done is represented as follows.
W = 
Putting the given values into the above formula as follows.
W = 
=
= 
= 
= 29596.78 J
or, = 29.596 kJ (as 1 kJ = 1000 J)
Therefore, the required work is 29.596 kJ.
(b) For an adiabatic process, work done is as follows.
W = 
=
= 
= 49.41 kJ
Therefore, work required to produce the same compression in an adiabatic process is 49.41 kJ.
(c) We know that for an isothermal process,

or, 
= 
= 11 atm
Hence, the required pressure is 11 atm.
(d) For adiabatic process,

or, 
= 
= 28.7 atm
Therefore, required pressure is 28.7 atm.