<span>In order for
an object to accelerate, a <u>force</u> must be applied. It follows Newton’s second
law of motion where it states that a body at rest remains at rest unless a
force is acted upon it. When you move an object, you are exerting a force onto
it. By exerting a force on the object, you are actually displacing it from its
initial position. You cannot apply force to the object without altering its
position. Keep in mind that when you exert work, you are exerting energy too. </span>
Answer:
A
Explanation:
Today there are three major deep ocean masses. North Atlantic Deep Water or NADW is mainly produced where the surface ocean is cooled in the Norwegian Sea in the northern part of the North Atlantic on the north side of a ridge that runs between Greenland, Iceland, and Scotland.
Given:
B =
T
V=
q = 2.5 ×
C
α = 90
To find:
Force = ?
Formula used:
Force on the moving charge is given by,
F = q V B sin α
Where F = force exerted on moving charge
V = velocity of charge
q = charge
α = angle between direction of V and B
Solution:
F = q V B sin α
Where F = force exerted on moving charge
V = velocity of charge
q = charge
α = angle between direction of V and B
F = 
F = 37.5 × 
F = 3.75 Newton
Thus, the force acting on the moving charge is 3.75 Newton.
Answer:
All objects on Earth, regardless of their mass, accelerate due to gravity at the same rate - that is, 9.8 m/sec2. The weight of an object can be calculated using the formula for force - F = m * a - where F equals the weight of the object and now the acceleration (a) is the acceleration of gravity (g).