D The Part That Stays The Same
Answer:

Explanation:
Given:
Pressure = 745 mm Hg
Also, P (mm Hg) = P (atm) / 760
Pressure = 745 / 760 = 0.9803 atm
Temperature = 19 °C
The conversion of T( °C) to T(K) is shown below:
T(K) = T( °C) + 273.15
So,
T₁ = (19 + 273.15) K = 292.15 K
Volume = 0.200 L
Using ideal gas equation as:

where,
P is the pressure
V is the volume
n is the number of moles
T is the temperature
R is Gas constant having value = 0.0821 L.atm/K.mol
Applying the equation as:
0.9803 atm × 0.200 L = n × 0.0821 L.atm/K.mol × 292.15 K
⇒n = 0.008174 moles
From the reaction shown below:-

1 mole of
react with 2 moles of 
0.008174 mole of
react with 2*0.008174 moles of 
Moles of
= 0.016348 moles
Volume = 13.4 mL = 0.0134 L ( 1 mL = 0.001 L)
So,



Https://us-static.z-dn.net/files/d49/33d4ec86853ef95e6f6c14242c663be4.png
The reaction for the combustion of methane can be expressed as follows.
CH4 + 2O2 --> CO2 + 2H2O
We solve first for the amount of carbon dioxide in moles by dividing the given volume by 22.4L which is the volume of 1 mole of gas at STP.
moles of CO2 = (5.6 L) / (22.4 L/1 mole)
moles of CO2 = 0.25 moles
Then, we can see that every mole of carbon dioxide will need 1 mole of methane
moles methane = (0.25 moles CO2) x (1 moles O2/1 mole CO2)
= 0.25 moles CH4
Then, multiply this by the molar mass of methane which is 16 g/mole. Thus, the answer is 4 grams methane.