Answer:
Current, I = 0.0011 A
Explanation:
It is given that,
Diameter of rod, d = 2.56 cm
Radius of rod, r = 1.28 cm = 0.0128 m
The resistivity of the pure silicon,
Length of rod, l = 20 cm = 0.2 m
Voltage,
The resistivity of the rod is given by :
R = 893692.30 ohms
Current flowing in the rod is calculated using Ohm's law as :
V = I R
I = 0.0011 A
So, the current flowing in the rod is 0.0011 A. Hence, this is the required solution.
I am pretty sure it’s A
The cue exerts force onto the white ball which pushes the blue ball into the direction of the hole.
Answer:
160.75 N
Explanation:
The downward velocity has no effect on the force situation, it is only changes in velocity (plus, of course, gravity, which is always there) that require a force. At constant velocity, the bottom spring s_3 is supporting its mass m_3 to balance gravity.
As the elevator slows, though, it also ends up slowing down the spring arrangement, too. However, because the stretching takes time, it means that some damped harmonic motion will be set up in the spring chain.
When the motion has finally damped out, the net force the bottom spring s3 exerts on m3 has two components--that of gravity and of the deceleration of the elevator:
F_3net = m3 * (g + a) = 10.5×(9.81+5.5)= 10.5×15.31= 160.75 N
Answer:
The correct answer is Option A.