0.01 m
< 0.03 m
< 0.04 m urea
As molal concentration rises, so does freezing point depression. It can be expressed mathematically as ΔTf = Kfm.
<h3>What is Colligative Properties ?</h3>
- The concentration of solute particles in a solution, not the composition of the solute, determines a colligative properties .
- Osmotic pressure, boiling point elevation, freezing point depression, and vapor pressure reduction are examples of ligand-like properties.
<h3>What is freezing point depression?</h3>
- When less of another non-volatile material is added, the temperature at which a substance freezes decreases, a process known as Freezing-point depression.
- Examples include combining two solids together, such as contaminants in a finely powdered medicine, salt in water, alcohol in water.
- An significant factor in workplace safety is freezing points.
- If a substance is kept below its freezing point, it may become more or less dangerous.
- The freezing point additionally offers a crucial safety standard for evaluating the impacts of worker exposure to cold conditions.
Learn moree about Colligative Properties here:
brainly.com/question/10323760
#SPJ4
Its impossible coz carbon has isotopes C-12 and C-13 whereas oygen has isotopes 16<span>O, </span>17<span>O, and </span>18<span>O, so impossible. Hope it helps</span>
Answer:
C₁₂H₂₂O₁₁ and CH₃OH
Explanation:
Sucrose and methyl alcohol are nonelectrolytes. They do not ionize or conduct a current in aqueous solution.
HC₂H₃O₂ is a weak electrolyte. It produces only a few ions and is a poor conductor of electricity in aqueous solution.
HC₂H₃O₂ + H₂O ⇌ H₃O⁺ + C₂H₃O₂⁻
H₂SO₄ is a strong electrolyte. Its first ionization is complete, so it is a good conductor of electricity in aqueous solution.
H₂SO₄ + H₂O ⟶ H₃O⁺ + HSO₄⁻
Q=mcT
125cal=(60.0g)(0.0920)(T-21)
[(125)/(60)(0.0920)]+21=T2
T2=43.6C
The average rate of reaction over a given interval can be calculated by taking the difference of concentration on a particular given reactant, and dividing it by the total time. In this case, (1.00 M - 0.655 M)/30 s = 0.0115 M/s, or 0.0115 mol/L-s, and this is the final rate of reaction.