Answer:
The wavelength of the line in the emission line spectrum of hydrogen caused by the transition of the electron for the given energy levels is 
Explanation:
Given :
The energy E of the electron in a hydrogen atom can be calculated from the Bohr formula:

= Rydberg energy
n = principal quantum number of the orbital
Energy of 11th orbit = 

Energy of 10th orbit = 

Energy difference between both the levels will corresponds to the energy of the wavelength of the line which can be calculated by using Planck's equation.


(Planck's' equation)


The wavelength of the line in the emission line spectrum of hydrogen caused by the transition of the electron for the given energy levels is 
Answer:
It should be 1. 1.2 X 10^24
Explanation:
The molecular structure of 1-nitrobutane is
. The structure of 1-nitrobutane is shown below.
An atom's formal charge would be determined by the covalent model of chemical bonding, which assumes that almost all chemical bonds include equal sharing of electrons among all atoms, regardless their relative electronegativity.
The structure for 1-nitrobutane, making sure to add all non-zero formal charges
There are four kind of molecule present in 1-nitrobutane and they are carbon, hydrogen , nitrogen and oxygen. Nitrogen is bonded with two oxygen atom out of them one oxygen atom is attached with single bond and second oxygen atom is bonded with double bond. Nitrogen has positive charge whereas oxygen has negative charge.
It is a kind of alkane in with nitro group is attached with alkane group.
To know more about 1-nitrobutane
brainly.com/question/25045923
#SPJ4
If the two gases has a total pressure of 5.7 atm and one of the gases has a partial pressure of 4.1 the the other one has the pressure of 1.6
Density=mass/volume
Data:
mass=890 g
volume=100 cm³
Density=890 g/100 cm³=8.9 g/cm³
answer: the density of the copper is 8.9 g/cm³