<u>Answer:</u> The mass of iron (II) oxide that must be used in the reaction is 30.37
<u>Explanation:</u>
The given chemical reaction follows:

By Stoichiometry of the reaction:
When 635 kJ of energy is released, 6 moles of iron (II) oxide is reacted.
So, when 44.7 kJ of energy is released,
of iron (II) oxide is reacted.
Now, calculating the mass of iron (II) oxide by using the equation:

Moles of iron (II) oxide = 0.423 moles
Molar mass of iron (II) oxide = 71.8 g/mol
Putting values in above equation, we get:

Hence, the mass of iron (II) oxide that must be used in the reaction is 30.37
First, in order to calculate the specific heat capacity of the metal in help in identifying it, we must find the heat absorbed by the calorimeter using:
Energy = mass * specific heat capacity * change in temperature
Q = 250 * 1.035 * (11.08 - 10)
Q = 279.45 cal/g
Next, we use the same formula for the metal as the heat absorbed by the calorimeter is equal to the heal released by the metal.
-279.45 = 50 * c * (11.08 - 45) [minus sign added as energy released]
c = 0.165
The specific heat capacity of the metal is 0.165 cal/gC
Answer: (e) The pressure in the container increases but does not double.
Explanation:
To solve this, we need to first remember our gas law, Boyle's law states that the pressure and volume of a gas have an inverse relationship. That is, If volume increases, then pressure decreases and vice versa, when temperature is held constant. Therefore, increasing the volume in this case does not double the pressure owning to out gas law, but an increase in pressure would be noticed if temperature is constant