Heat transferred - Work done = Internal Energy
Explanation:
- If there is more heat transfer than the work done, the energy difference is called internal energy
- The first law of thermodynamics equation is given as ΔU=Q−W where, ΔU = Internal energy; Q = Heat transfer; W = Work done
- Heat = transfer of thermal energy between two bodies at different temperatures
- Work = force used to transfer energy between a system and its surroundings
- The First Law of Thermodynamics states - energy can be converted from one form to another with the interaction of heat, work and internal energy
- Energy cannot be created nor destroyed
"When we do experiments it's a good idea to do multiple trials, that is, do the same experiment lots of times. When we do multiple trials of the same experiment, we can make sure that our results are consistent and not altered by random events. Multiple trials can be done at one time."
Answer:

Explanation:
We are asked to find the cyclist's initial velocity. We are given the acceleration, final velocity, and time, so we will use the following kinematic equation.

The cyclist is acceleration at 1.2 meters per second squared. After 10 seconds, the velocity is 16 meters per second.
= 16 m/s - a= 1.2 m/s²
- t= 10 s
Substitute the values into the formula.

Multiply.


We are solving for the initial velocity, so we must isolate the variable
. Subtract 12 meters per second from both sides of the equation.


The cyclist's initial velocity is <u>4 meters per second.</u>
I think it’s either A or B
An energy bar contains of 20grams of carbohydrates and 1gram
is equal to 17 KJ. If the energy bar was his only fuel the total energy
available is equal to (17,000 x 20) = 340,000j. Estimate KJ per hour is equal
to 1539KJ, it has Time equal to (340,000/1539,000) is equal to 0.2209 hour and
his Distance is equal to (5,000 x .2209) = 1.1045km.