<h2>Answer:</h2><h3>(A) the positively charged surface increases and the energy stored in the capacitor increases.</h3>
When charging a capacitor transferring charge from one surface to the other, the first surface becomes negatively charged while the second surface becomes positively charged. As you transfer the charge, the voltage of the positively charged surface increases and the energy stored in the capacitor also increases. We can solve this by the definition of <em>capacitance</em><em> </em>that is <em>a measure of the ability of a capacitor to store energy. </em>For any capacitor, the capacitance is a constant defined as:

To maintain
constant, if Q increases V also increases.
On the other hand, the potential energy
can be expressed as:

In conclusion, as Q increases the potential energy also increases.
The answer to your question would be C
Answer:
A. T=15.54 °C
B. Q/A= 0.119 W/m2
Explanation:
To solve this problem we need to use the Fourier's law for thermal conduction:

Here, the rate of flow per square meter must be the same through the complete wall. Therefore, we can use it to find the temperature at the plane where the wood meets the Styrofoam as follows:

Then, to find the rate of heat flow per square meter, we have:


Answer: 50 gram superball that strikes the wall at 1 m/s and bounces away at 0.8 m/s has greater change in kinetic energy.
Explanation:
50 gram superball that strikes the wall at 1 m/s and bounces away at 0.8 m/s has the greater change in kinetic energy because the collision is elastic in nature that is bodies separates after collision and doesn't lose any kinetic energy.
Also for an elastic collision, both the momentum and energy of the bodies are conserved compare to inelastic collision where only momentum is conserved but not the kinetic energy(this is attributed to bodies that sticks together after collision).
It cause earthquakes it can move bones of old animals and completely ruin geoligsts calculations