Answer:
0.07756 m
Explanation:
Given mass of object =0.20 kg
spring constant = 120 n/m
maximum speed = 1.9 m/sec
We have to find the amplitude of the motion
We know that maximum speed of the object when it is in harmonic motion is given by
where A is amplitude and
is angular velocity
Angular velocity is given by
where k is spring constant and m is mass
So 

I’m imagining imagining imagining an imagination...
The answer is a property of density. The higher the density, the higher the pressure at the bottom.
Pressure = mass / Area. So given that the 4 samples occupy the same area at the bottom, the mass is going to be the determining factor. Per given volume, mercury has the largest mass. The answer is A
Answer:
Explanation:
1 )
Here
wave length used that is λ = 580 nm
=580 x 10⁻⁹
distance between slit d = .46 mm
= .46 x 10⁻³
Angular position of first order interference maxima
= λ / d radian
= 580 x 10⁻⁹ / .46 x 10⁻³
= 0.126 x 10⁻² radian
2 )
Angular position of second order interference maxima
2 x 0.126 x 10⁻² radian
= 0.252 x 10⁻² radian
3 )
For intensity distribution the formula is
I = I₀ cos²δ/2 ( δ is phase difference of two lights.
For angular position of θ1
δ = .126 x 10⁻² radian
I = I₀ cos².126x 10⁻²/2
= I₀ X .998
For angular position of θ2
I = I₀ cos².126x2x 10⁻²/2
= I₀ cos².126x 10⁻²