1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Ivenika [448]
3 years ago
8

Copper and aluminum are being considered for a high-voltage transmission line that must carry a current of 60.7 A. The resistanc

e per unit length is to be 0.195 Ω/km. The densities of copper and aluminum are 8960 and 2600 kg/m3, respectively. Compute (a) the magnitude J of the current density and (b) the mass per unit length λ for a copper cable and (c) J and (d) λ for an aluminum cable.
Physics
2 answers:
lisov135 [29]3 years ago
7 0

Answer:

a) The magnitude JJ of the current density for a copper cable is 5.91 × 10⁵A.m⁻²

b)The mass per unit length \lambdaλ for a copper cable is 0.757kg/m

c)The magnitude J of the current density for an aluminum cable is 3.5 × 10⁵A/m²

d)The mass per unit length \lambdaλ for an aluminum cable is 0.380kg/m

Explanation:

The expression for electric field of conductor is,

E =  \frac{V}{L}

The general equation of voltage is,

V = iR

The expression for current density in term of electric field is,

J = \frac{E}{p}

Substitute (V/L)  for E in the above equation of current density.

J = \frac{V}{pL} ------(1)

Substitute iR for V in equation (1)

J = \frac{iR}{pL} ------(2)

Substitute 1.69 × 10⁸ Ω .m for p

50A for i

0.200Ω.km⁻¹ for (R/L) in eqn (2)

J = \frac{(50) (0.200\times 10^-^3) }{1.69 \times 10^-^8 } \\\\= 5.91 \times 10^5A.m^-^2

The magnitude JJ of the current density for a copper cable is 5.91 × 10⁵A.m⁻²

b) The expression for resistivity of the conductor is,

p = \frac{RA}{L}

A = \frac{pL}{R}

The expression for mass density of copper is,

m = dV

where, V is the density of the copper.

Substitute AL for V in equation of the mass density of copper.

m=d(AL)

m/L = dA

λ is use for (m/L)

substitute,

pL/R for A  and λ is use for (m/L) in the eqn above

\lambda = d\frac{p}{\frac{R}{L} } ------(3)

Substitute 0.200Ω.km⁻¹ for (R/L)

8960kgm⁻³  for d and 1.69 × 10⁸ Ω .m

\lambda = (8960) \frac{(1.69 \times 10^-^8 }{0.200\times 10^-^3} \\\\= 0.757kg.m^-^1

c) Using the equation (2) current density for aluminum cable is,

J = \frac{iR}{pL}

p is the resistivity of the aluminum cable.

Substitute 2.82 × 10⁻⁸Ω.m for p ,

50A for i and 0.200Ω.km⁻¹ for (R/L)

J = \frac{(50)(0.200\times10^-^3) }{2.89\times 10^-^8} \\\\= 3.5 \times10^5A/m^2

The magnitude J of the current density for an aluminum cable is 3.5 × 10⁵A/m²

d) Using the equation (3) mass per unit length for aluminum cable is,

\lambda = d\frac{p}{\frac{R}{L} }

p is the resistivity and is the density of the aluminum cable.

Substitute 0.200Ω.km⁻¹ for (R/L), 2700 for d and 2.82 × 10⁻⁸Ω.m for p

\lambda = (2700) \frac{(2.82 \times 10^-^8) }{(0.200 \times 10^-^3) } \\\\= 0.380kg/m

The mass per unit length \lambdaλ for an aluminum cable is 0.380kg/m

Stels [109]3 years ago
7 0

Answer:

(a) Jc = 6.88×10⁵A/m²

(b) λ = mass per unit length = 8960×8.82×10-⁵ = 0.790kg/

(c) Ja = 4.30×10⁵A/m²

(d) λ = mass per unit length = 8960×8.82×10-⁵ = 0.7367kg/m

Explanation:

Given:

the current to be carried in the conductors I = 60.7A

Densities of copper and aluminum, 8960kg/m³ and 2600kg/m³ respectively.

R/L = 0.195Ω/km = 0.195×10-³Ω/m

Required to find

(a) J the current density in A/m²

To do this we would need to know what the cross sectional area is. A relation that can help us is that of the resistance of a conductor which is

R = ρL/A

Where R is the resistance of the conductor in Ohms (Ω)

ρ is the resistivity of the (a property) conductor in (Ωm)

L is the length of the conductor

A is the cross sectional area of the conductor

From the formula, the resistance per unit length R/L = ρ/A

So A = ρ ÷ R/L

For copper, resistivity is ρ = 1.72×10-⁸Ωm

So Ac = 1.72×10-⁸/0.195×10‐³ = 8.82×10-⁵ m²

Ac = 8.82×10-⁵ m²

I = 60.7A

Jc = I/Ac = current density

Jc = 60.7/(8.82×10-⁵) = 6.88×10⁵A/m²

(b) λ = mass per unit length = density × Area

Copper: density = 8960kg/m³, Ac = 8.82×10-⁵ m²

λ = mass per unit length = 8960×8.82×10-⁵ = 0.790kg/m

(c) For aluminium, ρ = 2.75×10-⁸Ωm

So Aa = 2.75×10-⁸/0.195×10‐³ = 1.41×10-⁴ m²

Aa = 1.41×10-⁴ m²

Ja = I/Aa= current density

Ja = 60.7/(1.41×10-⁴) = 4.30×10⁵A/m²

(d) Aluminium: density = 2600kg/m³, Ac = 1.41×10-⁴m²

λ = mass per unit length = 2600×1.41×10-⁴ = 0.367kg/m

You might be interested in
Scientists often use models to study the movement of continents. Why might scientists use a model to show this movement? A. Extr
egoroff_w [7]

Answer:

Paleontologists have argued for a long time that the demise of the dinosaurs was caused by climatic alterations associated with slow changes in the positions of continents and seas resulting from plate tectonics. Off and on throughout the Cretaceous (the last period of the Mesozoic era, during which dinosaurs flourished), large shallow seas covered extensive areas of the continents. Data from diverse sources, including geochemical evidence preserved in seafloor sediments, indicate that the Late Cretaceous climate was milder than today's. The days were not too hot, nor the nights too cold. The summers were not too warm, nor the winters too frigid. The shallow seas on the continents probably buffered the temperature of the nearby air, keeping it relatively constant.

3 0
3 years ago
Read 2 more answers
A 0.50 kg toy is attached to the end of a 1.0 m very light string. The toy is whirled in a horizontal circular path on a frictio
xenn [34]

Answer:

The maximum speed will be 26.475 m/sec

Explanation:

We have given mass of the toy m = 0.50 kg

radius of the light string r = 1 m

Tension on the string T = 350 N

We have to find the maximum speed without breaking the string  

For without breaking the string tension must be equal to the centripetal force

So T=\frac{mv^2}{r}

So 350=\frac{0.5\times v^2}{1}

v^2=700

v = 26.475 m /sec

So the maximum speed will be 26.475 m/sec

6 0
3 years ago
Fatima is watching her pet cat, Winter, napping in the sun. Fatima is curious about the heart rate of Winter when she is napping
svetoff [14.1K]

Answer:

Explanation:

There are two hypotheses she could test:

A cat's heart rate changes while it is napping.

A cat's heart rate does not change while it is napping.

3 0
3 years ago
Read 2 more answers
A test piolot flies with an acceleration of 5
Colt1911 [192]

On Earth, 1 g = 9.8 m/s² .

5 g = 5 · (9.8 m/s²)

5 g = 49 m/s²

5 0
3 years ago
Define wavelength as it relates to the electromagnetic spectrum.
swat32
The electromagnetic spectrum is traditionally divided into regions of radio waves, microwaves, infrared radiation, visible light, ultraviolet rays, x rays, and gamma rays. ... Wavelength defines the distance between adjacent points of the electromagnetic wave that are in equal phase (e.g., wavecrests)
7 0
3 years ago
Read 2 more answers
Other questions:
  • Which describes nuclear fusion?
    11·2 answers
  • Summarize what you read on the three websites you visited by identifying the advantages and disadvantages of using plastics.
    13·2 answers
  • What is the acceleration of a cabinet of mass 45 kilograms if Jake and Ted push it by applying horizontal force of 25 newtons an
    11·1 answer
  • Which of the following is a field force
    5·1 answer
  • A roller coaster car is going over the top of a 18-mm-radius circular rise. At the top of the hill, the passengers "feel light,"
    15·1 answer
  • How are mass and inertia related
    8·1 answer
  • A quelle distance le soletl se trouve-t-il de la terre?
    10·1 answer
  • Which statement accurately describes the charge of the nucleus of an atom?
    9·1 answer
  • Calculate the volume that 42g of nitrogen gas (N2)occupies at standard temperature and pressure.​
    12·1 answer
  • Suppose that your data shows that saturn orbits every 29. 5 years. To the nearest hundredth of an au, how far is saturn from the
    5·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!