1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Ivenika [448]
3 years ago
8

Copper and aluminum are being considered for a high-voltage transmission line that must carry a current of 60.7 A. The resistanc

e per unit length is to be 0.195 Ω/km. The densities of copper and aluminum are 8960 and 2600 kg/m3, respectively. Compute (a) the magnitude J of the current density and (b) the mass per unit length λ for a copper cable and (c) J and (d) λ for an aluminum cable.
Physics
2 answers:
lisov135 [29]3 years ago
7 0

Answer:

a) The magnitude JJ of the current density for a copper cable is 5.91 × 10⁵A.m⁻²

b)The mass per unit length \lambdaλ for a copper cable is 0.757kg/m

c)The magnitude J of the current density for an aluminum cable is 3.5 × 10⁵A/m²

d)The mass per unit length \lambdaλ for an aluminum cable is 0.380kg/m

Explanation:

The expression for electric field of conductor is,

E =  \frac{V}{L}

The general equation of voltage is,

V = iR

The expression for current density in term of electric field is,

J = \frac{E}{p}

Substitute (V/L)  for E in the above equation of current density.

J = \frac{V}{pL} ------(1)

Substitute iR for V in equation (1)

J = \frac{iR}{pL} ------(2)

Substitute 1.69 × 10⁸ Ω .m for p

50A for i

0.200Ω.km⁻¹ for (R/L) in eqn (2)

J = \frac{(50) (0.200\times 10^-^3) }{1.69 \times 10^-^8 } \\\\= 5.91 \times 10^5A.m^-^2

The magnitude JJ of the current density for a copper cable is 5.91 × 10⁵A.m⁻²

b) The expression for resistivity of the conductor is,

p = \frac{RA}{L}

A = \frac{pL}{R}

The expression for mass density of copper is,

m = dV

where, V is the density of the copper.

Substitute AL for V in equation of the mass density of copper.

m=d(AL)

m/L = dA

λ is use for (m/L)

substitute,

pL/R for A  and λ is use for (m/L) in the eqn above

\lambda = d\frac{p}{\frac{R}{L} } ------(3)

Substitute 0.200Ω.km⁻¹ for (R/L)

8960kgm⁻³  for d and 1.69 × 10⁸ Ω .m

\lambda = (8960) \frac{(1.69 \times 10^-^8 }{0.200\times 10^-^3} \\\\= 0.757kg.m^-^1

c) Using the equation (2) current density for aluminum cable is,

J = \frac{iR}{pL}

p is the resistivity of the aluminum cable.

Substitute 2.82 × 10⁻⁸Ω.m for p ,

50A for i and 0.200Ω.km⁻¹ for (R/L)

J = \frac{(50)(0.200\times10^-^3) }{2.89\times 10^-^8} \\\\= 3.5 \times10^5A/m^2

The magnitude J of the current density for an aluminum cable is 3.5 × 10⁵A/m²

d) Using the equation (3) mass per unit length for aluminum cable is,

\lambda = d\frac{p}{\frac{R}{L} }

p is the resistivity and is the density of the aluminum cable.

Substitute 0.200Ω.km⁻¹ for (R/L), 2700 for d and 2.82 × 10⁻⁸Ω.m for p

\lambda = (2700) \frac{(2.82 \times 10^-^8) }{(0.200 \times 10^-^3) } \\\\= 0.380kg/m

The mass per unit length \lambdaλ for an aluminum cable is 0.380kg/m

Stels [109]3 years ago
7 0

Answer:

(a) Jc = 6.88×10⁵A/m²

(b) λ = mass per unit length = 8960×8.82×10-⁵ = 0.790kg/

(c) Ja = 4.30×10⁵A/m²

(d) λ = mass per unit length = 8960×8.82×10-⁵ = 0.7367kg/m

Explanation:

Given:

the current to be carried in the conductors I = 60.7A

Densities of copper and aluminum, 8960kg/m³ and 2600kg/m³ respectively.

R/L = 0.195Ω/km = 0.195×10-³Ω/m

Required to find

(a) J the current density in A/m²

To do this we would need to know what the cross sectional area is. A relation that can help us is that of the resistance of a conductor which is

R = ρL/A

Where R is the resistance of the conductor in Ohms (Ω)

ρ is the resistivity of the (a property) conductor in (Ωm)

L is the length of the conductor

A is the cross sectional area of the conductor

From the formula, the resistance per unit length R/L = ρ/A

So A = ρ ÷ R/L

For copper, resistivity is ρ = 1.72×10-⁸Ωm

So Ac = 1.72×10-⁸/0.195×10‐³ = 8.82×10-⁵ m²

Ac = 8.82×10-⁵ m²

I = 60.7A

Jc = I/Ac = current density

Jc = 60.7/(8.82×10-⁵) = 6.88×10⁵A/m²

(b) λ = mass per unit length = density × Area

Copper: density = 8960kg/m³, Ac = 8.82×10-⁵ m²

λ = mass per unit length = 8960×8.82×10-⁵ = 0.790kg/m

(c) For aluminium, ρ = 2.75×10-⁸Ωm

So Aa = 2.75×10-⁸/0.195×10‐³ = 1.41×10-⁴ m²

Aa = 1.41×10-⁴ m²

Ja = I/Aa= current density

Ja = 60.7/(1.41×10-⁴) = 4.30×10⁵A/m²

(d) Aluminium: density = 2600kg/m³, Ac = 1.41×10-⁴m²

λ = mass per unit length = 2600×1.41×10-⁴ = 0.367kg/m

You might be interested in
Is there more potentioal energy at the top of bottom of a ramp?
kicyunya [14]
At the top of the ramp as there's more distance away from the ground
6 0
3 years ago
When Earth runs into the dust trail left behind by a comet that is orbiting the Sun, Earth experiences a _____.
tekilochka [14]
The answer to this question is: C) Meteor Shower
7 0
3 years ago
Read 2 more answers
If p(a)=0.07692, p(b)=0.25, and probability of a and b. =0.01923, what is probability of a or b. to four decimal places? select
Triss [41]

Answer:

p(a) * p(b) = .01923

p(b) = .01923 / .07692 = .2500

5 0
1 year ago
Name the physical quantity which changes contenously during uniform-circular motion.
kumpel [21]
The direction of the motion is constantly changing during
motion over any closed path, not only circular.
8 0
3 years ago
An airplane flies with a velocity of 750. kilometers
viktelen [127]

Answer:

650 km/hr

Explanation:

Draw a right triangle from (0.0) (Point A) down 30 degrees and to the right for a length of 750 (Point B).  Then draw a line from B up to the x axis to make a right angle (Point C).  Use the cosine function to find line AC, the vector portion of AB that lies of the x (East) axis.  Cosine(30)= Adjacent/Hypotenuse.

Cos(30) = AC/750

750*(cos(30)) = AC

AC = 649.5 km/hr

5 0
2 years ago
Read 2 more answers
Other questions:
  • In 1990, a pizza with a radius of 18.0 m was made in South Africa. Suppose you make an air-filled capacitor with parallel plates
    9·1 answer
  • 4. Jimmy dropped a 10 kg bowling ball from a building that is 25 meters high.
    9·1 answer
  • What is the potential difference across a 15 Ω resistor that has a current of 3.0 A?
    9·2 answers
  • Within the electron cloud there are different _______________ of electrons. A) types B) energy levels C) atomic masses D) electr
    6·2 answers
  • PLZ HELP
    9·1 answer
  • A ball thrown straight up climbs for 3.0 sec before falling. Neglecting air resistance, with what velocity was the ball thrown?
    8·1 answer
  • Assume that a clay model of a lion has a mass of 0.225 kg and travels on the ice at a speed of 0.85 m/s. It hits another clay mo
    8·1 answer
  • 1a. for the free body diagram below, are the forces balanced or unbalanced?​
    6·1 answer
  • Stars emit different wavelengths of visible light due to their different
    14·2 answers
  • Two lamps, each having reisistance of 3 Ohms, connect in a series. What current will flow if a voltage source of 5 V is connecte
    13·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!