1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Ivenika [448]
3 years ago
8

Copper and aluminum are being considered for a high-voltage transmission line that must carry a current of 60.7 A. The resistanc

e per unit length is to be 0.195 Ω/km. The densities of copper and aluminum are 8960 and 2600 kg/m3, respectively. Compute (a) the magnitude J of the current density and (b) the mass per unit length λ for a copper cable and (c) J and (d) λ for an aluminum cable.
Physics
2 answers:
lisov135 [29]3 years ago
7 0

Answer:

a) The magnitude JJ of the current density for a copper cable is 5.91 × 10⁵A.m⁻²

b)The mass per unit length \lambdaλ for a copper cable is 0.757kg/m

c)The magnitude J of the current density for an aluminum cable is 3.5 × 10⁵A/m²

d)The mass per unit length \lambdaλ for an aluminum cable is 0.380kg/m

Explanation:

The expression for electric field of conductor is,

E =  \frac{V}{L}

The general equation of voltage is,

V = iR

The expression for current density in term of electric field is,

J = \frac{E}{p}

Substitute (V/L)  for E in the above equation of current density.

J = \frac{V}{pL} ------(1)

Substitute iR for V in equation (1)

J = \frac{iR}{pL} ------(2)

Substitute 1.69 × 10⁸ Ω .m for p

50A for i

0.200Ω.km⁻¹ for (R/L) in eqn (2)

J = \frac{(50) (0.200\times 10^-^3) }{1.69 \times 10^-^8 } \\\\= 5.91 \times 10^5A.m^-^2

The magnitude JJ of the current density for a copper cable is 5.91 × 10⁵A.m⁻²

b) The expression for resistivity of the conductor is,

p = \frac{RA}{L}

A = \frac{pL}{R}

The expression for mass density of copper is,

m = dV

where, V is the density of the copper.

Substitute AL for V in equation of the mass density of copper.

m=d(AL)

m/L = dA

λ is use for (m/L)

substitute,

pL/R for A  and λ is use for (m/L) in the eqn above

\lambda = d\frac{p}{\frac{R}{L} } ------(3)

Substitute 0.200Ω.km⁻¹ for (R/L)

8960kgm⁻³  for d and 1.69 × 10⁸ Ω .m

\lambda = (8960) \frac{(1.69 \times 10^-^8 }{0.200\times 10^-^3} \\\\= 0.757kg.m^-^1

c) Using the equation (2) current density for aluminum cable is,

J = \frac{iR}{pL}

p is the resistivity of the aluminum cable.

Substitute 2.82 × 10⁻⁸Ω.m for p ,

50A for i and 0.200Ω.km⁻¹ for (R/L)

J = \frac{(50)(0.200\times10^-^3) }{2.89\times 10^-^8} \\\\= 3.5 \times10^5A/m^2

The magnitude J of the current density for an aluminum cable is 3.5 × 10⁵A/m²

d) Using the equation (3) mass per unit length for aluminum cable is,

\lambda = d\frac{p}{\frac{R}{L} }

p is the resistivity and is the density of the aluminum cable.

Substitute 0.200Ω.km⁻¹ for (R/L), 2700 for d and 2.82 × 10⁻⁸Ω.m for p

\lambda = (2700) \frac{(2.82 \times 10^-^8) }{(0.200 \times 10^-^3) } \\\\= 0.380kg/m

The mass per unit length \lambdaλ for an aluminum cable is 0.380kg/m

Stels [109]3 years ago
7 0

Answer:

(a) Jc = 6.88×10⁵A/m²

(b) λ = mass per unit length = 8960×8.82×10-⁵ = 0.790kg/

(c) Ja = 4.30×10⁵A/m²

(d) λ = mass per unit length = 8960×8.82×10-⁵ = 0.7367kg/m

Explanation:

Given:

the current to be carried in the conductors I = 60.7A

Densities of copper and aluminum, 8960kg/m³ and 2600kg/m³ respectively.

R/L = 0.195Ω/km = 0.195×10-³Ω/m

Required to find

(a) J the current density in A/m²

To do this we would need to know what the cross sectional area is. A relation that can help us is that of the resistance of a conductor which is

R = ρL/A

Where R is the resistance of the conductor in Ohms (Ω)

ρ is the resistivity of the (a property) conductor in (Ωm)

L is the length of the conductor

A is the cross sectional area of the conductor

From the formula, the resistance per unit length R/L = ρ/A

So A = ρ ÷ R/L

For copper, resistivity is ρ = 1.72×10-⁸Ωm

So Ac = 1.72×10-⁸/0.195×10‐³ = 8.82×10-⁵ m²

Ac = 8.82×10-⁵ m²

I = 60.7A

Jc = I/Ac = current density

Jc = 60.7/(8.82×10-⁵) = 6.88×10⁵A/m²

(b) λ = mass per unit length = density × Area

Copper: density = 8960kg/m³, Ac = 8.82×10-⁵ m²

λ = mass per unit length = 8960×8.82×10-⁵ = 0.790kg/m

(c) For aluminium, ρ = 2.75×10-⁸Ωm

So Aa = 2.75×10-⁸/0.195×10‐³ = 1.41×10-⁴ m²

Aa = 1.41×10-⁴ m²

Ja = I/Aa= current density

Ja = 60.7/(1.41×10-⁴) = 4.30×10⁵A/m²

(d) Aluminium: density = 2600kg/m³, Ac = 1.41×10-⁴m²

λ = mass per unit length = 2600×1.41×10-⁴ = 0.367kg/m

You might be interested in
A young man and woman are sitting on opposite sides of a park bench (1m). If the young man has a mass of 70kg and the woman has
ZanzabumX [31]

Answer:

130N

Explanation:

F<em>=</em><em>(</em><em>M1+</em><em>M</em><em>2</em><em>)</em><em>V</em>

<em>F=</em><em> </em><em>(</em><em>7</em><em>0</em><em>+</em><em>6</em><em>0</em><em>)</em><em>*</em><em>1</em>

<em>F=</em><em>1</em><em>3</em><em>0</em><em>*</em><em>1</em>

<em>F=</em><em>1</em><em>3</em><em>0</em><em>N</em><em>/</em><em>/</em>

6 0
3 years ago
Help please help me?
Andrews [41]

Answer:

C. Planet D has the greatest mass and will exert a greater gravitational force

6 0
3 years ago
What is the change in velocity of a 22-kg object that experiences a force of 15 N for
vagabundo [1.1K]

Answer:

Force = mass × acceleration

Acceleration:

{ \tt{15 = (22 \times a)}} \\ { \tt{a =  \frac{15}{22}  \:  {ms}^{ - 2} }}

From first Newton's equation of motion:

{ \bf{v = u + at}}

Change = v - u:

{ \tt{v - u = (a \times t)}} \\ { \tt{v - u = ( \frac{15}{22} \times 1.2) }} \\ { \tt{v - u = 0.82 \:  {ms}^{ - 2} }}

3 0
3 years ago
Why does light behave as shown in the image when it passes from air to glass?
Leto [7]
B) Light slows down when it passes into a denser medium. 

5 0
3 years ago
Read 2 more answers
IMPORTANT!!! DUE IN 5 MINS I NEED HELP PLEASE
Ket [755]

Answer:

684.5 is the weight on mars and 1813 on earth

Explanation:

185*3.7=684.5 185*9.8=1813 you multiply for earth by 9.8 because that's the gravity on earth and you multiply by 3.7 because that's the gravity on mars

6 0
3 years ago
Other questions:
  • The velocity of a car is 108 km h-1 what is the velocity in units of ms -1
    12·1 answer
  • Find the force needed to accelerate a .3 kg bullet at 2100 m / s / s.
    8·1 answer
  • What is the approximate angular diameter of venus when it is a very slim crescent? (measure full diameter of the planet, not jus
    13·1 answer
  • A race car exerts 18,344 N while the car travels at an acceleration of 92.54 m/s2. What is the mass of the car? (Use the formula
    12·2 answers
  • The tub of a washing machine goes into its spin cycle, starting from rest and gaining angular speed steadily for 8.00 s, at whic
    6·1 answer
  • What bone cells respond to stress ?
    15·1 answer
  • A kitten sits in a lightweight basket near the edge of a table. A person accidentally knocks the basket off the table. As the ki
    14·1 answer
  • HELP PLS its been a day and this lesson is due today and ita already night here and i have to solve this questions or else my pa
    9·1 answer
  • As the water molecules heat up they become more dense and float to the top. True or False
    11·1 answer
  • Can someone please help me with science.
    11·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!