1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Ivenika [448]
4 years ago
8

Copper and aluminum are being considered for a high-voltage transmission line that must carry a current of 60.7 A. The resistanc

e per unit length is to be 0.195 Ω/km. The densities of copper and aluminum are 8960 and 2600 kg/m3, respectively. Compute (a) the magnitude J of the current density and (b) the mass per unit length λ for a copper cable and (c) J and (d) λ for an aluminum cable.
Physics
2 answers:
lisov135 [29]4 years ago
7 0

Answer:

a) The magnitude JJ of the current density for a copper cable is 5.91 × 10⁵A.m⁻²

b)The mass per unit length \lambdaλ for a copper cable is 0.757kg/m

c)The magnitude J of the current density for an aluminum cable is 3.5 × 10⁵A/m²

d)The mass per unit length \lambdaλ for an aluminum cable is 0.380kg/m

Explanation:

The expression for electric field of conductor is,

E =  \frac{V}{L}

The general equation of voltage is,

V = iR

The expression for current density in term of electric field is,

J = \frac{E}{p}

Substitute (V/L)  for E in the above equation of current density.

J = \frac{V}{pL} ------(1)

Substitute iR for V in equation (1)

J = \frac{iR}{pL} ------(2)

Substitute 1.69 × 10⁸ Ω .m for p

50A for i

0.200Ω.km⁻¹ for (R/L) in eqn (2)

J = \frac{(50) (0.200\times 10^-^3) }{1.69 \times 10^-^8 } \\\\= 5.91 \times 10^5A.m^-^2

The magnitude JJ of the current density for a copper cable is 5.91 × 10⁵A.m⁻²

b) The expression for resistivity of the conductor is,

p = \frac{RA}{L}

A = \frac{pL}{R}

The expression for mass density of copper is,

m = dV

where, V is the density of the copper.

Substitute AL for V in equation of the mass density of copper.

m=d(AL)

m/L = dA

λ is use for (m/L)

substitute,

pL/R for A  and λ is use for (m/L) in the eqn above

\lambda = d\frac{p}{\frac{R}{L} } ------(3)

Substitute 0.200Ω.km⁻¹ for (R/L)

8960kgm⁻³  for d and 1.69 × 10⁸ Ω .m

\lambda = (8960) \frac{(1.69 \times 10^-^8 }{0.200\times 10^-^3} \\\\= 0.757kg.m^-^1

c) Using the equation (2) current density for aluminum cable is,

J = \frac{iR}{pL}

p is the resistivity of the aluminum cable.

Substitute 2.82 × 10⁻⁸Ω.m for p ,

50A for i and 0.200Ω.km⁻¹ for (R/L)

J = \frac{(50)(0.200\times10^-^3) }{2.89\times 10^-^8} \\\\= 3.5 \times10^5A/m^2

The magnitude J of the current density for an aluminum cable is 3.5 × 10⁵A/m²

d) Using the equation (3) mass per unit length for aluminum cable is,

\lambda = d\frac{p}{\frac{R}{L} }

p is the resistivity and is the density of the aluminum cable.

Substitute 0.200Ω.km⁻¹ for (R/L), 2700 for d and 2.82 × 10⁻⁸Ω.m for p

\lambda = (2700) \frac{(2.82 \times 10^-^8) }{(0.200 \times 10^-^3) } \\\\= 0.380kg/m

The mass per unit length \lambdaλ for an aluminum cable is 0.380kg/m

Stels [109]4 years ago
7 0

Answer:

(a) Jc = 6.88×10⁵A/m²

(b) λ = mass per unit length = 8960×8.82×10-⁵ = 0.790kg/

(c) Ja = 4.30×10⁵A/m²

(d) λ = mass per unit length = 8960×8.82×10-⁵ = 0.7367kg/m

Explanation:

Given:

the current to be carried in the conductors I = 60.7A

Densities of copper and aluminum, 8960kg/m³ and 2600kg/m³ respectively.

R/L = 0.195Ω/km = 0.195×10-³Ω/m

Required to find

(a) J the current density in A/m²

To do this we would need to know what the cross sectional area is. A relation that can help us is that of the resistance of a conductor which is

R = ρL/A

Where R is the resistance of the conductor in Ohms (Ω)

ρ is the resistivity of the (a property) conductor in (Ωm)

L is the length of the conductor

A is the cross sectional area of the conductor

From the formula, the resistance per unit length R/L = ρ/A

So A = ρ ÷ R/L

For copper, resistivity is ρ = 1.72×10-⁸Ωm

So Ac = 1.72×10-⁸/0.195×10‐³ = 8.82×10-⁵ m²

Ac = 8.82×10-⁵ m²

I = 60.7A

Jc = I/Ac = current density

Jc = 60.7/(8.82×10-⁵) = 6.88×10⁵A/m²

(b) λ = mass per unit length = density × Area

Copper: density = 8960kg/m³, Ac = 8.82×10-⁵ m²

λ = mass per unit length = 8960×8.82×10-⁵ = 0.790kg/m

(c) For aluminium, ρ = 2.75×10-⁸Ωm

So Aa = 2.75×10-⁸/0.195×10‐³ = 1.41×10-⁴ m²

Aa = 1.41×10-⁴ m²

Ja = I/Aa= current density

Ja = 60.7/(1.41×10-⁴) = 4.30×10⁵A/m²

(d) Aluminium: density = 2600kg/m³, Ac = 1.41×10-⁴m²

λ = mass per unit length = 2600×1.41×10-⁴ = 0.367kg/m

You might be interested in
25 points. Pls, hurry, What happens to the energy of a wave if the amplitude of the wave is doubled?
inysia [295]

Answer:

The energy transported by a wave is directly proportional to the square of the amplitude. So whatever change occurs in the amplitude, the square of that effect impacts the energy. This means that a doubling of the amplitude results in a quadrupling of the energy.

The amount of energy they carry is related to their frequency and their amplitude. The higher the frequency, the more energy, and the higher the amplitude, the more energy.

8 0
2 years ago
Plzpzlpzlzplzplzplzpz this one also<br> all questions ​
WINSTONCH [101]

Answer:

I didn't know these questions sorry

4 0
3 years ago
If a magnetic field is to exert a force on a current-carrying wire, the field must have some vector component:
mash [69]

Answer:

D.) perpendicular to the current

i am 100% sure :)

3 0
4 years ago
What object best represents a true scale model of the shape of earth?
BabaBlast [244]
Any object that is spherical in shape would best represent a true scale model of the shape of the Earth. Examples are ping pong balls, billiard balls, marble and other smooth spherical objects. The shape of the Earth is called the oblate spheroid. The "oblate" would refer to an oblong shape and "spheroid" would refer to an almost spherical shape. The earth has on almost spherical shape and has a slightly oblong appearance. The diameter from the South pole to the north pole was measured to have a value of 12714 km while the diameter of the equator is approximately 12756 km. As you can see, the values are not equal. This makes the earth not a perfect sphere.
6 0
4 years ago
A 282 kg bumper car moving 3.50 m/s collides with a 155 kg bumper car moving -1.38 m/s. Afterwards the 282 kg car moves at 1.10
icang [17]

Answer:

4.03 m/s

Explanation:

Initial momentum = final momentum

(282 kg) (3.50 m/s) + (155 kg) (-1.38 m/s) = (282 kg) (1.10 m/s) + (115 kg) v

v = 4.03 m/s

6 0
3 years ago
Read 2 more answers
Other questions:
  • 1. Discuss some of the dangers and obstacles that Nyad faced when sw
    14·1 answer
  • What is the acceleration of a 50kg object that has been given a 20N push?
    9·1 answer
  • If a basketball travles a distance of 4 meters in 5 seconds whst is the average speed​
    13·2 answers
  • Spinning wind turbine blades have kinetic energy. Wind turbines transform this energy into electric energy and heat energy in a
    6·2 answers
  • A camper paddles 406 meters in 70.0 seconds. What is the average speed ?
    8·1 answer
  • Which of the following best describes the use of a renewable resource? (2 points)
    9·2 answers
  • Help Please!
    13·1 answer
  • Convertir 12kg a libras​
    10·1 answer
  • A neutron with a mass of 1.67 × 10-27 kg traveling east with a kinetic energy of 2.00 × 10-21 J collides perfectly elastically w
    11·1 answer
  • An old shade-tree mechanic trick for removing a stubborn bolt is to slip a long pipe over the handle of the wrench, then apply a
    7·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!