1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
brilliants [131]
3 years ago
13

Light is polarized by using:

Physics
1 answer:
maxonik [38]3 years ago
8 0

Answer:

Polaroid fliter

Explanation:

light can be polarized by using Polaroid filters

Polaroid fliter are made of special material that is capable of blocking one of the two planes of vibration of an electromagnetic wave

hope this is useful--(have a good day)

You might be interested in
What affects fuel consumption in automobiles?
maksim [4K]

Answer:

A and C

Explanation:

drag (the area of lower air pressure behind the car when moving) and mostly air resistance (the work to push the air in front of us away to move through - the faster we go, the stronger the air resists to move aside).

4 0
2 years ago
A turtle and a rabbit are in a 150 meter race. The rabbit decides to give the turtle a 1 minute head start. The turtle moves at
yan [13]

Answer:

a) s_{T} = 30\,m, b) t = 5\,min, c) \Delta t = 6.667\,s, d) \Delta s_{R} = 33.333\,m, e) t' = 11.667\,s, f) The rabbit won the race.

Explanation:

a) As turtle moves at constant speed, its position is determined by the following formula:

s_{T} = v_{T}\cdot t

Where:

t - Time, measured in seconds.

v_{T} - Velocity of the turtle, measured in meters per second.

s_{T} - Position of the turtle, measured in meters.

Then, the position of the turtle when the rabbit starts to run is:

s_{T} = \left(0.5\,\frac{m}{s} \right)\cdot (60\,s)

s_{T} = 30\,m

The position of the turtle when the rabbit starts to run is 30 meters.

b) The time needed for the turtle to finish the race is:

t = \frac{s_{T}}{v_{T}}

t = \frac{150\,m}{0.5\,\frac{m}{s} }

t = 300\,s

t = 5\,min

The time needed for the turtle to finish the race is 5 minutes.

c) As rabbit experiments a constant acceleration until maximum velocity is reached and moves at constant speed afterwards, the time required to reach such speed is:

v_{R} = v_{o,R} + a_{R}\cdot \Delta t

Where:

v_{R} - Final velocity of the rabbit, measured in meters per second.

v_{o,R} - Initial velocity of the rabbit, measured in meters per second.

a_{R} - Acceleration of the rabbit, measured in \frac{m}{s^{2}}.

\Delta t - Running time, measured in second.

\Delta t = \frac{v_{R}-v_{o,R}}{a_{R}}

\Delta t = \frac{10\,\frac{m}{s}-0\,\frac{m}{s}}{1.50\,\frac{m}{s^{2}} }

\Delta t = 6.667\,s

The time taken by the rabbit to reach maximum speed is 6.667 s.

d) On the other hand, the position reached by the rabbit when maximum speed is reached is determined by the following equation of motion:

v_{R}^{2} = v_{o,R}^{2} + 2\cdot a_{R}\cdot \Delta s_{R}

\Delta s_{R} = \frac{v_{R}^{2}-v_{o,R}^{2}}{2\cdot a_{R}}

\Delta s_{R} = \frac{v_{R}^{2}-v_{o,R}^{2}}{2\cdot a_{R}}

Where \Delta s_{R} is the travelled distance of the rabbit from rest to maximum speed.

\Delta s_{R} = \frac{\left(10\,\frac{m}{s} \right)^{2}-\left(0\,\frac{m}{s} \right)^{2}}{2\cdot \left(1.50\,\frac{m}{s^{2}} \right)}

\Delta s_{R} = 33.333\,m

The distance travelled by the rabbit from rest to maximum speed is 33.333 meters.

e) The time required for the rabbit to finish the race can be determined by the following expression:

t' = \frac{\Delta s_{R}}{v_{R}}

t' = \frac{150\,m-33.333\,m}{10\,\frac{m}{s} }

t' = 11.667\,s

The time required for the rabbit from rest to maximum speed is 11.667 seconds.

f) The animal with the lowest time wins the race. Now, each running time is determined:

Turtle:

t_{T} = 300\,s

Rabbit:

t_{R} = 60\,s + 6.667\,s + 11.667\,s

t_{R} = 78.334\,s

The rabbit won the race as t_{R} < t_{T}.

7 0
3 years ago
When the leveling bulb is higher than the water level, the pressure in the system is greater than atmospheric pressure.
malfutka [58]

When the leveling bulb is higher than the water level, the pressure in the system is greater than atmospheric pressure. This statement is true.

In the physical sciences, pressure is defined as the stress at a point within a confined fluid or the perpendicular force per unit area. A 42-pound box with a bottom area of 84 square inches will impose pressure on a surface equal to the force divided by the area it is applied to, or half a pound per square inch.

Atmospheric pressure, which is roughly 15 pounds per square inch at sea level, is the weight of the atmosphere pressing down on each unit area of the Earth's surface. Pascals are used to express pressure in SI units; one pascal is equivalent to one newton per square meter. Almost 100,000 pascals of atmospheric pressure are present.

To learn more about pressure please visit-
brainly.com/question/12971272
#SPJ4

4 0
1 year ago
Last night Mookie Betts hit a baseball at 32.5 m/s at a 45° angle. Betts
podryga [215]

Answer:

a) Since the height of the baseball at 99 m was 8.93 m and the fence at that distance is 3m tall, the hit was a home run.

b) The total distance traveled by the baseball was 108.7 m.

Explanation:

a) To know if the hit was a home run we need to calculate the height of the ball at 99 m:

y_{f} = y_{0} + v_{0_{y}}t - \frac{1}{2}gt^{2}

Where:

y_{f}: is the final height =?

y_{0}: is the initial height = 1 m

v_{0_{y}: is the initial vertical velocity = v₀sin(45)

v₀: is the initial velocity = 32.5 m/s

g: is the gravity = 9.81 m/s²

t: is the time    

First, we need to find the time by using the following equation:

t = \frac{x}{v_{0_{x}}} = \frac{99 m}{32.5 m/s*cos(45)} = 4.31 s

Now, the height is:

y_{f} = y_{0} + v_{0_{y}}t - \frac{1}{2}gt^{2} = 1m + 32.5 m/s*sin(45)*4.31 s - \frac{1}{2}9.81 m/s^{2}*(4.31 s)^{2} = 8.93 m      

Since the height of the baseball at 99 m was 8.93 m and the fence at that distance is 3m tall, the hit was a home run.

b) To find the distance traveled by the baseball first we need to find the time of flight:

y_{f} = y_{0} + v_{0_{y}}t - \frac{1}{2}gt^{2}

0 = 1 m + 32.5m/s*sin(45)t - \frac{1}{2}9.81 m/s^{2}t^{2}

1 m + 32.5m/s*sin(45)t - \frac{1}{2}9.81 m/s^{2}t^{2} = 0

By solving the above quadratic equation we have:

t = 4.73 s

Finally, with that time we can find the distance traveled by the baseball:

x = v_{0_{x}}*t = 32.5 m/s*cos(45)*4.73 s = 108.7 m

Hence, the total distance traveled by the baseball was 108.7 m.

I hope it helps you!                                                                                  

4 0
3 years ago
You are in your car at rest when the traffic light turns green. You place your coffee cup on the horizontal dash and hit the gas
umka21 [38]

Answer:

(d) Negative.

Explanation:

let's test each at a time.

(a) It can't be 0, because cup would slide back other wise.

(b) Positive, well if forward is positive, than the work done against the forward acceleration must be negative , so it can't be positive.

(c) Equal to non-conservative work done by the car's engine.

well no, because work done by car's engine dosen't go all of it into getting car to move, so it can't be that.

(d) negative, this look like it, because work that friction does must be nagative to counteract positive thrust of car which is positive and in forward direction.

(d) this can't be true.

So the answer is (d) negative.

3 0
3 years ago
Other questions:
  • a 455n gymnast jumps upward a distance of 1.5 meters to reach the uneven parallel bars. how much work did she do before she even
    5·1 answer
  • At approximately what wavelength of the continuous spectrum will the greatest (maximum) intensity occur when 60-kV electrons str
    10·1 answer
  • If an object moves 40 m north, 40 m west, 40 m south, and 40 m east, what's the total displacement?
    6·2 answers
  • If two Force in opposite direction one is 120 N and the other is 5 N were applied on a box . The box equals 30kg. The magnitude
    8·1 answer
  • If 143 joules of work are needed to move a box 9 meters, what force was used?
    13·2 answers
  • A 20-kg object sitting at rest is struck elastically in a head-on collision with a 10-kg object initially moving at 3.0 m/s. Fin
    13·1 answer
  • An airplane is flying in a horizontal circle at a speed of 100 m/s. The 80.0 kg pilot does not want the centripetal acceleration
    14·1 answer
  • Si unit of small g and G​
    7·1 answer
  • Which of the following is a chemical property?
    9·1 answer
  • A force of 36N acts at an angle of 55 degrees to the vertical. The force moves its point of application by 64 cm in the directio
    14·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!