expressing adverse or disapproving comments or judgments.
Answer:
she should add solute to the solvent
Explanation:
Given data :
Mass of the sodium chloride, = 20.0 g
Concentration of the solution = 10 g/L
Volume of 20.0 g of sodium chloride = 7.50 mL
Now, from the concentration, we can conclude that for 10 g of sodium chloride volume of the solution is 1 L
thus, for 20 g of sodium chloride volume of the solution is 2 L or 2000 mL
also,
Volume of solution = Volume of solute(sodium chloride) + volume of solvent (water)
thus,
2000 mL = 7.5 mL + volume of solvent (water)
or
volume of water = (2000 - 7.5) mL
or
volume of water = 1992.5 mL
or
volume of water = 199.25 L ≈ 199 L
There would be no mass or weight and he would float away
Radiation: Getting sunburnt on a beach.
- The sun’s radiation (no direct contact) is what causes the skin to burn.
Radiation: Microwave cooking food
- Microwaves use radiation to heat the food inside of it; between radio waves and infrared radiation on the electromagnetic spectrum
Conduction: Touching a hot car seat in the summer
- Conduction is the transfer of heat by direct contact (hand to seat).
Conduction: Burning yourself with a curling iron (Similar to above; direct contact).
Convection: An ocean breeze
- Convection near coastlines cause the transfer of energy; water warms and cools slower than land.
Conduction: Sliding down a hot metal slide in august
- You are in direct contact with the slide, which is hot due to the temperature.
Convection: Water in a boiling pot of macaroni
- The water, a liquid, is being heated by molecular motion.
Convection: Currents deep within the earth that cause tectonic plates to move
- Convection currents drive the movement of tectonic plates in the mantle, which is fluid/molten. The currents circulate under the asthenosphere.
Answer:
Temperature at the exit = 
Explanation:
For the steady energy flow through a control volume, the power output is given as

Inlet area of the turbine = 
To find the mass flow rate, we can apply the ideal gas laws to estimate the specific volume, from there we can get the mass flow rate.
Assuming Argon behaves as an Ideal gas, we have the specific volume 
as


for Ideal gasses, the enthalpy change can be calculated using the formula

hence we have


<em>Note: to convert the Kinetic energy term to kilojoules, it was multiplied by 1000</em>
evaluating the above equation, we have 
Hence, the temperature at the exit = 