Answer:
movement in tectonic plates. or volcanic eruptions.
Explanation:
For the question given above, option 2 which is H-Cl pair of atoms has the most polar bond among the four of them.
The larger the value of the electronegativity, the greater the atom’s strength to attract a bonding pair of electrons. <span>Hydrogen has an electronegativity of 2.1, and chlorine has an electronegativity of 3.0. The electron pair that is bonding HCl together shifts toward the chlorine atom because it has a larger electronegativity value.</span>
Answer:
The lock-and-key model:
c. Enzyme active site has a rigid structure complementary
The induced-fit model:
a. Enzyme conformation changes when it binds the substrate so the active site fits the substrate.
Common to both The lock-and-key model and The induced-fit model:
b. Substrate binds to the enzyme at the active site, forming an enzyme-substrate complex.
d. Substrate binds to the enzyme through non-covalent interactions
Explanation:
Generally, the catalytic power of enzymes are due to transient covalent bonds formed between an enzyme's catalytic functional group and a substrate as well as non-covalent interactions between substrate and enzyme which lowers the activation energy of the reaction. This applies to both the lock-and-key model as well as induced-fit mode of enzyme catalysis.
The lock and key model of enzyme catalysis and specificity proposes that enzymes are structurally complementary to their substrates such that they fit like a lock and key. This complementary nature of the enzyme and its substrates ensures that only a substrate that is complementary to the enzyme's active site can bind to it for catalysis to proceed. this is known as the specificity of an enzyme to a particular substrate.
The induced-fit mode proposes that binding of substrate to the active site of an enzyme induces conformational changes in the enzyme which better positions various functional groups on the enzyme into the proper position to catalyse the reaction.
When energy transforms into mass, the amount of energy does not remain the same. When mass transforms into energy, the amount of energy also does not remain the same. However, the amount of matter and energy remains the same. ... You would weigh much less on the Moon because it is only about one-sixth the mass of Earth. So the answer is D